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CHAPTER 1
Circuit Elements and I.aws

1.1  Voltage

Energy 1s required for the movement of charge from one pomnt to another. Let W
Joules of energv be required to move positive charge () columbs from a pomnt a to
point b 1n a circurt. We say that a voltage exists between the two points. The voltage
V between two points may be defined in terms of energy that would be required if a
charge were transferred from one point to the other. Thus, there can be a voltage
between two points even if no charge 1s actually moving from one to the other
Voltage between a and b 1s given by

W
V= QIC

Worked are (W) in Joules

Hence Electric Potential (V) =
Ch arg e (Q)in columbs

Current :
An electric current 15 the movement of electric charges along a definite path. In case

of a conductor the moving charges are electrons.

The umt of current 15 the ampere. The ampere 15 defined as that current which when

flowing in two mnfinitely long parallel conductors of negligible cross section, situated 1 meter

-

apart in Vacuum. produces between the conductors a force of 2 x 10 Newton per metre
length.
Power : Power 15 defined as the work done per unit time. If a field F newton acts for t

seconds through a distance d metres along a straight line, work done W = Fxd N.m. or J. The

power P_ either generated or dissipated by the circuit element.

P:E =de
t t




Work

Power can also be written as Power= fime

Work Ch arge
= Ch arge*  Time
= Voltage x Current P = V x [ watt.
Energy : Electric energy W 1s defined as the Power Consumed in a grven time. Hence, if
current [A flows in an element over a time period t second, when a voltage V volts 15 applied

across it, the energy consumed 15 given by
W=Pxt=VxIxt]orwatt second.

The unit of energy W 1s Joule (J) or watt. second. However, in practice, the unit of

energy 1s kilowatt. hour (Kwh)

Resistance - According to Ohm's law potential difference (V) across the ends of a
conductor is proportional to the current (I) flowing through the conductor ata

constant temperature. Mathematically Ohm's law 15 expressed as

ValooV=R=xlI

A%
OrR= [ where R 1s the proportionality constant and 1s designated as the conductor

resistance and has the unit of Ohm (()).
Conductance : Voltage is induced 1n a stationary conductor when placed 1n a varving
magnetic field. The induced voltage (e) 1z proportional to the tume rate of change of

current, di/dt producing the magnetic field.

di
Therefore e @ dt

di
Ore=L dt




e and 1 are both function of ttime. The proportionality constant L 1s called inductance.

The Unit of inductance 1s Henery (H).

Capacitance : A capacitor 15 a Physical device, which when polarized by an electric field by

applving a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge 15 measured in terms of capacitance.

Capacitence of a capacitor 15 defined as the charge stored per Volt applied.

13

q Coulomb

C= = Farad

v olt

Active and passive Branch :

A branch 1s said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.

Branch : A branch 15 an element of the network having only two terminals.

Bilateral and unilateral element :

A bilateral element conducts equallv well i erther direction Resistors and inductors
are examples of bilateral elements. When the current voltage relations are different for
the two directions of current flow. the element 1= said to be unilateral Diode 1= an

unilateral element.

Linear Elements : When the current and voltage relationship in an element can be
simulated by a linear equation etther algebraic, differential or integral tvpe, the

element is said to be linear element.

Non Linear Elements - When the current and voltage relationship 1n an element can

not be simulated by a linear equation, the element 1s said to be non linear elements.

Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in anv closed path or loop 15 Zero.




Application of KVL with senies connected voltage source.
R,

AW

Fig. 1.1

ViV r—IE1—IE=0

=Vi+V2 =1 (R1tRz2)
v
I+ VZ
1= R1 +R 2

Application of KVL while voltage sources are connected in opposite polarity.

W\

Fig. 1.2

R

Vi—IR - V—-1IR—1R3=0
% Vi-Vz=IR; +IR; +IR3
Fa Vi-V2=1(R; +IRz +1IR3)




1= BRy+R; +R;

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode i3 zero.

Fig. 1.3
Considenng five conductors, carrying currents I3, I, I3, 1y and Is meeting at a point O.

Assuming the incoming currents to be posttive and outgoing currents negative.

h+C)+h+ ) +1s=0
1T+ I-1s+15=0

11+ +1s=+14

Thus above Law can also be stated as the sum of currents flowing towards any
junction in an electric circuit 15 equal to the sum of the currents flowing away from
that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors R and R> 1n senies across it

Fig. 1.4




I= BiiR;

ER,
Voltage dropacross Rj =1 R1 = R;+R,

ER;
Similarly voltage drop across Ro =1Ry = B4R,

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches 1n a

parallel circuit.

Fig. 1.5

Fiz. shown the current I has been divided mte Iy and I in two parallel branches with

resistances B and Ry while V 13 the voltage drop across Ry and Rz

V V
I;=— and[;.; =
R R

Let B = Total resistance of the circuat.

Hence L ==1+_1
E R1 Ra
RiRy

% R: R1+Rg




Y g%— VMR *R
E = 1 2 = RlR.g
Ri*+R;

But=V=LR1 =Ry

% RAR
1 2 )
3 [= LR +R2
R;
Therefore R
Ii= B3+R,

Similarly 1t can be dertved that

_IR;
= Ri+R;




CHAPTER 2

Magnetic Circuits :
Introduction - Magnetic flux lines always form closed loops. The closed path
followed by the flux hines i1s called a magnetic circuit. Thus, a magnetic circuit
provides a path for magnetic flux, just as an electric circuit provides a path for the
flow of electric current. In general, the tenm magnetic circuit applies to any closed
path in space, but in the analysis of electro-mechanical and electronic system this term
1s specifically used for circuits containing a major portion of ferromagnetic materials.
The study of magnetic circuit concepts 15 essential in the design, analysis and
application of electromagnetic devices like transformers, rotating machines,

electromagnetic relays etc.

Magnetomotive Force (MLALF) :

Flux 1s produced round any current — carrving coil. In order to produce the required
flux density. the coil should have the comrect number of tums. The product of the

current and the number of tumns 15 defined as the coil magneto motive force (m.m f).

If I= Current through the coil (A)

N = Number of tums mn the coi1l.

Magnetomotive force = Current x turns

SoMMF=IXN

The unit of MM F_ 1z ampere—turn (AT) but 1t 1s taken as Ampere(A) since N

has no dimensions.

Magnetic Field Intensity

Magnetic Field Intensity 1s defined as the magneto-motive force per unit length of the

magnetic flux path. Its symbol 1s H.

10




1 _ Magnetomotive force
Magnetic field Intensity{H}=
Mean length of the magnetic path

F IN .
% H= ]= | Am

Where [ 15 the mean length of the magnetic circott 1n meters. Magnetic field intensity 1s also

called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines
of force. For example, iron is better conductor for magnetic lines of force than
air (vaccum) . Permeability of a material (M) is its conducting power for

magnetic lines of force. It is the ratio of the flux density. (B) Produced in a

B
material to the magnetic filed strength (H) i.e. u= H

Reluctance :
Reluctance (s) is akin to resistance (which limits the electric Current).

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a
measure of the opposition offered by a magnetic circuit to the setting up of the
flux.

Reluctance is the ratio of magneto motive force to the flux. Thus

Mmf
o ¢

Its unit is ampere turns per webber (or AT/wb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).
Permeance (A)=1/S wb/AT
Turn T has no unit.

Hence permeance is expressed in wb/A or Henerys(H).

11




Electric Field versus Magentic Field.

1)

3)

4)

5)

6)

1)

2)

Similarities

Electric Field

Flow of Current (I)

Emf is the cause of

flow of current

Resistance offered
to the flow of
Current, is called

resistance (R)

Conductance
o=10)

R
Current density is
amperes per square

meter.

Current (I) - ER{[ER

1)

3)

4)

3)

6)

Dissimilarities

Current actually flows

in an electric Circuit.

Energy 1s needed as

long as current flows

1)

Magnetic Field
Flow of flux (2)

MMT is the cause of

flow of flux

Resistance offered to
the flow of flux. 1s

called reluctance (S)

1
Permitivity () = /'S

Flux density is number

of lines per square
meter.
MMF
Flux (2) =
5

Flux does not actually
flow in a magnetic
circuif.

Energy is initially
needed to create the

magnetic flux, but not

12




to maintain it.

3) Conductance 1s 3) Permeability (or
constant and magnetic
independent of current conductance )
strength at a particular depends on the total
temperature. flux for a particular

temperature.
B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a
solenoid to magnetise it. The field H produced by the solenoid, is called
magnetising field, whose wvalue can be altered (increased or decreased) by
changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic field (H) from zero to maximum value,
the value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (i.e iron bar) finally attains the maximum value of flux
density (Bm) at point 2 and thus becomes magnetically saturated.

il
ol | *

Fig. 2.1
Now if value of H is decreased slowly (by decreasing the current in the

solenoid) the corresponding value of flux density (B) does not decreases along
2-1 but decreases some what less rapidly along 2 to 3. Consequently during the

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other

13




wards, during the period of removal of magnetization force (H). the iron bar is

not completely demagnetized.

In order to demagnetise the iron bar completely. we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
direction of current in the solenoid). The value of B is reduced to zero at point 4,
when H='14'". This value of H required to clear off the residual magnetisation, is
known as coercive force i.e. the tenacity with which the material holds to its

magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now if the value of H is increased
from negative saturation (= '45") to positive saturation ( = '12') a curve '5.6,7.2'
is obtained. The closed loop "2,3.4.5,6,7.2" thus represents one complete cycle

of magnetisation and is known as hysteresis loop.

14




NETWORK ANALYSIS

Different terms are defined below:

1. Circuit: A circuit 1s a closed conducting path through which an electric current either

flow or 1z intended flow

2. Network: A combination of various electric elements, connected in any manner.

Whatsoever. 15 called an electric network

3. Node: 1t 1s an equipotential pomt at which two or more circuit elements are joined.

4. Junction: it 1s that point of a network where three or more circuit elements are joined.
5. Branch: 1t 13 a part of a network which lies between junction pomts.

6. Loop: It 15 a closed path in a circuit in which no element or node 15 accounted more than

Once.

7. Mesh: It is a loop that contains no other loop within 1t.

Example 3.1 In this circutt configuration of figure 3.1, obtain the no. of 1) circutt elements 1)
nodes 111) junction points 1v) branches and v) meshes.

Rs

i

LNV AN — ¢

R Ro Va2
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Solution: 1) no. of circuit elements = 12 {9 resistors + 3 voltage sources)
u)no. ofnodes=10{a.b.c.d. e feg h k p)
111} no. of junction points =3 (b, e, h)

1v) no. of branches =5 (bede, be, bh, befgh, bakh)

v) no. of meshes =3 (abhk, bede, beth)

3.2 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used 1n finding solutions
for a network The suitability of either mesh or nodal analysis to a particular problem
depends mainly on the number of voltage sources or current sources If a network has a large
number of voltage sources, 1t 1s useful to use mesh analysis; as this analysis requires that all
the sources in a circuit be voltage sources. Therefore, if there are any current sources 1n a
circuit they are to be converted into equivalent voltage sourcesif on the other hand, the
network has more current sources nodal analysis 15 more useful.

Mesh analyvsis 1s applicable only for planar networks. For non-planar circuits mesh
analysis 1s not applicable A circuit is said to be planar, if 1t can be drawn on a plane surface
without crossovers. A non-planar circutt cannot be drawn on a plane surface without a

CIOSE0VET.

Figure 3.2 (a) 1= a planar circuit. Figure 3 2 (b) 15 a non-planar circuit and fig. 3.2 (c) 15 a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop
iz a closed path. A mesh 1s defined as a loop which does not contain anv other loops within it.
To apply mesh analysis_ our first step 1s to check whether the circuit 1s planar or not and the
second 1s to select mesh currents. Finally, writing Kirchhoff s voltage law equations in terms
of unknowns and solving them leads to the final solution.

W pya—

_\fW A’ vy
5 , ] ®
ARE
(b)

(a) (c)
Figure 3.2

Observation of the Fig 3.2 indicates that there are two loops abefa and bedeb in the
network Let us assume loop currents I1 and Irwith directions as indicated in the figure.

16
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Considering the loop abefa alone, we observe that current [ 1s passing through Ry and (13-
1) 1s passing through R By applying Kirchhoff's voltage law, we can write

Vs =hR1+Ro(11-I2) (3.1

b
Ve Rz
Ry
Iz
f 3 d
Figure 33

Similarly, if we consider the second mesh bedeb. the current I 1s passing through B3
and R4 and (I2 — I1) 15 passing through R> By applying Kirchhoff''s voltage law around the

second mesh. we have

Ry (Io-I1) + R3lp +R4Ir =0 (3.2)

By rearranging the above equations the corresponding mesh current equations are

I1 (R1#+R2) - LRy =V,

1iR2 HR2HR3HR o) =0 (33)

By solving the above equations. we can find the currents I; and I If we observe

Fig. 3.3, the circuit consists of five branches and four nodes. including the reference node The
number of mesh currents 1s equal to the number of mesh equations.

And the number of equations=branches-{nodes-1).1n Fig 3 3, the required number of
mesh current would be 3-(4-1)=2.

17




CNT, Semester 37, Diploma Engineering (Electrical & Elactronics)

In general we have B number of branches and N number of nodes including the
reference node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh
50
current equations in the circuit shown 10V 2Q
v
in fizg 3 4 and determune the currents.
Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig. 3.5, The mesh

current equations are

50
10NTy I 100
TS Y [sov
Figure 35
511 + 2(I1-I) =10
1012 +2(12-11) +50=0 (3.4)

We can rearrange the above equations as
71 -21; =10
201 +121 =-30 (3.3)

Byv solving the above equations. we have [1=025 A and [ =-4.123

1002

15
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Here the current in the second mesh I3 1s negative; that is the actual current I> flows opposite

to the assumed direction of current 1n the circurt of fig 3 5.

Example 3.3 Determine the mesh current I3 in the circuit shown in fig 3 6.

Figure 3.6

Solution: From the circuit, we can from the following three mesh equations

101+5(I1+1) +3(11-13) = 50
20y +5(h+h) +1(h+h) =10
3(5-N)yH1B+R)=-5
Rearranging the above equations we get
1813+51>-313=50
5I)+817 + I3=10
-3 + I+ 4I3=235

According to the Cramer™s rule

(3.6)
@G.7
(3.8)

(3.9)
(3.10)
(3.11)

15
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0 5 -3

10 8 1
L=-51 4 _175

18 5 -3 3%

s 8 1

-3 1 4

Or I1=33 A Siumilarly,

158 0 -3
3 10 1
= = i, 4 _—-355
18 5 -3 356
5 8 1
-3 1 4
Or Ir=0997A
18 5 50
5 &8 10
e -3 1 —5 _ 325
3= =
18 3 -3 356
5 B 1
-3 1
OrIz=147A

SI=33A, I=0.997A =1.47A

(3.13)

AIMESHEQUATIONS BY INSPECTION METHODThRe mezh equations for 2 general plansr network can be witten
by mspechon without going through the detailed steps. Conzider 2 three mezh networks a3 shown in figure 3.7

The loop equation are ITR1+ R2(T-I2) =Vi

Ry B3

3, Iz “N\Rs

Figure 3.7

20
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Rao( I-In yrI2R3=-V2 3.14
Ryl;+RsI:=V2 3.15

Reordering the above equations, we have

(R1+R2)1-Rax=V) 3.16
RBoli HEB2+R3)Lh=V> 317
(Rat+Rs)3=V3 318

The general mesh equations for three mesh resistive network can be written as

Riili 2 Rl £+ Rizlz=Va 319
+Ruli+Razl: + Rals=Ve 3.20
+ Rl £ Ra:l+Rssl=Ve 321

Bv comparing the equations 3.16, 3.17 and 3.18 with equations 3.19. 3. 20 and 3.21
respectively, the following observations can be taken into account.

1. The zelf-resistance 11 each mesh

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self-resistance of loop 1, R11=R1+R3. 1s the sum of the resistances through which Iy
passes.

The mutual resistance of loop 1, F.12= -R>_ 18 the sum of the resistances common to loop
currents I1 and I7 If the directions of the currents passing through the common resistances are
the same_ the mutual resistance will have a positive sign; and 1if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

V=V 15 the voltage which drives the loop 1. Here the positive sign 1s used 1f
the direction of the currents 15 the same as the direction of the source. If the current
direction 1s opposite to the direction of the source, then the negative sign 1s used.

Similarly R12=R2+R3 and R33=R4+E 5 are the self-resistances of loops 2 and 3
respecttvely. The mutual resistances R13=0, R21= -R2. R23=0. E31=0, R32=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vi=-V2. V= V2 are the sum of the voltages dniving their respective loops.

21




CNT, Semester 37, Diploma Engineering (Electrical & Elactronics)

Example 3.4 write the mesh equation for the circust shown in fig 3.8

50
(M
I] _1L\.._.-/II +
mvg:) JE! 40
-
60
£ \=20V
. '
Figure 3.8

Solution : the general equation for three mesh equation are

Riily * Ryl + Ry3li=V;, (3.22)
+Rali+Ral: # Rul=Ve (3.23)
(3.24)

* Raili # Raals+Ras=Ve

Consider equation 3.22

B11=self resistance of loop 1=(103-3 Q +6 2) =10 Q2
B.12= the mutual resistance common to loop 1 and loop 2=-3 0

Here the negative sign indicates that the currents are in opposite direction

. R13= the mutual resistance commontoloop 1 & 3=-6 0

WVa=+10 V, the voltage the drrving the loop 1.

Here he positive sign indicates the loop current I; 15 in the same direction as the

source element.

Therefore equation 3.22 can be written as
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10 13- 3I2-615=10 V (3.23)
Consider Eq. 3.23

R21=the mutual resistance common to loop 1 and loop 2=-3 0

Ray= self resistance of loop 2=(30+ 2 Q0 +5 Q) =100
F23=0, there 1z no common resistance between loop 2 and 3.
v =-2 V_ the voltage driving the loop 2.
Therefore Eq. 3.23 can be written as
-31) + 10I2=-5V (3.26)
Consider Eq 3 24
F.31= the mutual resistance common to loop 1 and loop3=-610)
R3>= the mutual resistance common to loop 3 and loop 2 =0
B33= self resistance of loop 3=(600+4 ) =10 O
W= the algebraic sum of the voltage driving loop 3
=53 VH20V)=25 V (3.27)
Therefore, Eq3.24can be written as -611 + 10I3= 23V
-611-317-613= 10V
3L +10I=35V
-6I1+10I3=25V

3.4 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then 1t 1s slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to the assigned mesh currents. This 1s generally a difficult approach. On way to overcome this
difficulty 13 by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh 1z constituted by two adjacent loops that have a common current
source. As an example, consider the network shown 1n the figure 3.9,

Fz I3 R4
.‘—
3

23
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Here the current source I 15 in the common boundary for the two meshes 1 and 2. This current

source creates a supermesh, which 1s nothing but a combmnation of meshes 1 and 2.
Rili + R3(I2-I3)=V

Or Rili + B3k -Rul=V

Considering mesh 3_ we have

Ra(I3-I)+~ Ralz=0

Finally the current I from current source 1s equal to the difference between two mesh currents
1€

I1-I=1

we have thus formed three mesh equations which we can solve for the three unknown

currents in the network.

Example 3.5 Determine the current in the 5£) resistor in the network given 1in Fig 3 10

I 100 I

30 % ()_ I 30 ; 1Q
S B— I
50

d

Figure 3.10
Solution: - From the first mesh. 1.e. abeda. we have
50 =10(I3-1>) + 5(1;-I3)
Or 1313-1012 -313 =30 (3.28)

From the second and third meshes. we can form a super mesh
10(I2-11)+212 +H13+5(13-11)=0

Or -15311+121 +613 =0 (3.29)

24
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The current source 1s equal to the difference between II and IIT mesh currents
re I-I3=2A (3.30)
Solving 3.28.3.29 and 3.30. we have
[1=1999A Th=1733A and[3=1333
A The current 1n the 50 resistor =I; -1z =19.99
-1533=4 66A
The current in the 30 resistor 1s 4 66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, Iy Iy and I3

1oV
— T
I L
I» I3
Cb , 30 1Q
10
A i",
« R — 20
I III
I
Figure 3.11

Solution ; In fig 3.11, the current source lies on the penimeter of the circuit, and the
first mesh 1s 1gnored. Kirchhoff s voltage law 1s applied only for second and third meshes .

From the second mesh. we have

3(L-Ii )+ 2(T-I3)+10 =0
Or 3 +5h-2I3 =-10 (3.31)

From the third mesh. we have
I3+2(05-12) =10

Or 01,4313 =10 (3:32)
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From the first mesh, I =10A (3.33)
From the abovethree equations, we get

I1=10A, Ip=727, I; =B.18A

3.5 NODALANALYSIS

In the chapter T we discussed simple circusts comtamning only two nodes, mcluding the
reference node. In general, in a N node circust, one of the nodes is chosen as the reference or datum
node, then it 15 possible to write N -lnodal equations by assuming N-1 node voltages. For
example al0 node circoit requires nine unknown voltages and mine equations. Each node 1n a circurt
can be assigned a number or a letter. The node voltage 15 the voltage of a given node with respect to
one particular node, called the reference node, which we assume at zero potential In the circust shown
in fig. 3.12. node 3 1s assumed as the Reference node. The voltage at node 1 is the voltage at that node
with respect to node 3. Stmilarly, the voltage at node 2 1s the voltage at that node with respect to node
3. Applying Eirchhoff*'s current law at node 1, the cument entering is the current leaving (See
Fig 3.13)

Lad

Figure 312

Ro

— Iy — /\/\/\/\;2
) %Rl

Iy

@

Figure 3.13

I1I=V1/R1 +(V1-V2)R2

26
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Where V1 and V7 are the voltages at node 1 and 2, respectively. Similarly, at node

2 the current entering 1s equal to the current leaving as shown 1n fig 3 14

Eao —/R_A,
—AN\NN T—+ \/W\_L
“— |
R3 ™\ "NRs

% % Figure 3.14

(V2-Vi)Ra + V2/R3 + V2/(Re+Rs) =0

Rearranging the above equations, we have
Vi[l/R1+1/R2]-Va(VRa)=1h

V1(1/R2) + Va[1/R2+1/R3+1/(R4+Rs)]=0

From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3 15

@2 50 § ) GD;A lﬂ§> 60

[ L T

Solution : At node 1, assuming that all currents are leaving, we have
(Vi1-10)/10 + (V1-V2) 3 +V1/5 + (V1-V2)/i3 =0
Or i{I/10+13 +1/5+1/3]1-Vo[ 13 +1/3]=1

10V

0.96V1-066V2=1 (3.36)
Atnode 2, assuming that all currents are leaving except the current from current source, we
have

(Va-V1)/3+ (V2-V1)/3+ (Va-V3)/2 =5
N1[2BHVA[13 +1/3 + 1/2]-Va(1/2) =5

0.66V1+1.16V2-0.5V3=5 (337)

P
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At node 3 assuming all currents are leaving, we

have (V3-V2)/2 +V3/1 + V36 =0

05V +166Vi=0

Applying Cramer™'s rule we get
1 -066 O
3 116 -05
. 0 -05 1866 7154
N = =806
09% -066 O 0.887
-066 116 -05
0 -05 166
Similarly,
096 1 0
—-066 5 -05
Vi 0 0 166 - 906 ~102
096 —0.66 0 0887
086 116 —0.5
0 =05 166
09 =066 1
-066 116 3
Vi= 0 05 0 L ZAS w0 oy
09% -0.66 0O 0.887

-0.66 116 -05
0 -05 166

(3.38)

3.6 NODAL EQUATIONS BY INSFECTION METHOD The nodal equations for 3 general planar network can also be wmtfen by
mzpecton without gomg throush the detailed steps. Conzider 2 thres node resistrve netvork, mcludng the reference node, as shown m Bz

ils

Vi

Ry

Rs

Figure 3.16

Va

28
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In fig. 3.16 the points a and b are the actual nodes and c 1s the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

Ri Va R3 RaVy Rs

- Figure 3.17 —

In fig 3.17 (a), according to Kirchhoff's current law we have
L1+ 1:=0
(Va-V1)R1 +VaRo+ (Va-Vp)R3=0 (3.39)
Infig 3.17 (b) . if we apply Kirchhoffs current law
Lit+Is=13
S (Ve-Va) R + Ve Ry +H(Vp-V2)Rs5=0 (3.40)
Rearranging the above equations we get

(LVR3+1Ry+1/B3Wa- (VB3 V=L RV (3.41)

(-1 R3)Va+ (1/R3+H1IR4+1/R5WVie=V2/Rs (3.42)

In general, the above equation can be written as
GaaVa + Gap V=11 (3.43)

GpaVa + Gup V=12 (3.44)

By comparing Egs 3 413 42 and Eqs 3 43, 3 44 we have the self conductance at node
a, Gaa=(1R1 + 'Rz + 1/R3) 1s the sum of the conductances connected to node a. Similarly,
Guw = (1/R3 + 1/Bs +1/K5) 13 the sum of the conductances connected to node b. Gap=(- 1/'R3)
1s the sum of the mutual conductances connected to node a and node b Here all the mutual
conductances have negatrve signs. Similarly, Gupa= (-1/R3) 15 also a mutual conductance
comnected between nodes b and a. I1 and Ip are the sum of the source currents at node a and
node b, respectively. The current which drives into the node has positive sign, while the
current that drives away from the node has negative sign.
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Example 3.8 for the circuit shown m the figure 318 write the node equations by the
inspection method.

10V 20 <

Fig3.18
Solution:-
The general equations are
GaaVatGan V=l (3.43)
GpaVa + G Ve=I2 (3.46)

Consider equation 3 45
Gy5=(1+ 1/2 +1/3) mho. The self conductance at node a 1s the sum of the
conductances connected to node a.

Gupr=(1/6+ 1/5 + 1/3) mho the self conductance at node & 1s the sum of

conductances connected to node 5.

Gap =(1/3) mho, the mutual conductances between nodes a and b 1s the sum of the

conductances connected between node o and b,

Similarly Gpa =-(1/3), the sum of the mutual conductances between nodes b and

a. I1=10/1 =10 A, the source current at node a.
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I=(2/5 + 5/6) = 1.23A the source current at node b.

Therefore, the nodal equations are

1.83V,-033Ve=10 (3.47)
-0.33V+0.7Vp=123 (348)
3.7 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then 1t 1s slightly difficult to
apply nodal analysis. One way to overcome this difficulty 1s to apply the supernode
technigue. In this method, the two adjacent nodes that are connected by a voltage source are
reduced to a single node and then the equations are formed by applying Kirchhoff''s current
law as vsual. This 1s explained with the help of fig. 3.19

i Vs i V3
—\V\WN——O
Rz Vx
I @™ Ry R; R4 Rs
E==g'
1
FIG3.19

It 1s clear from the fig 3 19, that node 4 1s the reference node. Applying Kirchhoff™'s

current law at node 1, we get
EHViR1 )+ (Vi-V2IRz

Due to the presence of voltage source Vy 1 between nodes 2 and 3 | 1t 1s shghtly
difficult to find out the current. The supernode technique can be conveniently applied in this

Case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.

£
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(V2-V1)Ry + Vo/R3 +(V3-V3)Rgy *V3/R5=0
The other equation 1s
1{:’2_“! 3 — Tx

From the above three equations. we can find the three unknown voltages.

Example 3.9 Determine the current in the 5 £ resistor for the circust shown in fig.

3.20
20
36 20
(1ro aze
JLAY fig. 3.20

Solution. At node 1

10=V13 + (V1-V2)2
Or V1[1/3 +1/2]-(V2/2)-10=0
0.83V1-053V2-10=0 (3.49)
At node 2 and 3. the supermode equation is

(V2-Vi)2 + V21 +(V3-10)/5+V32=0

Or —Vi/2-+Va[(12)+1]+V3[1/5 + 1/2]=2

Or -05Vi+1.5V+0.7V3-2=0 (2.50)

The voltage between nodes 2 and 3 1s given by

Va-Vi=20 (3.51)
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The current in 5Q resistor Is =(V3-10)/3
Solving equation 3 .49, 3. 50 and 3.51, we obtamn
V=842V

Currents [5=(-8 42-10)/5 =-3.68 A (current towards node 3 ) 1.2 the

current flows towards node 3.

3.5 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has
alreadv been discussed in chapter 1 that basically, energy sources are either voltage sources
of current sources. Sometimes 1t 15 necessary to convert a voltage source to a current source
or vice-versa. Any practical voltage source consists of an ideal voltage source in series with
an internal resistance. Similarly, a practical current source consists of an i1deal current source

in parallel with an internal resistance as shown 1n figure3 21. Ry and R; represent the internal

resistances of the voltage source V; . and current source I; respectively.

Ry

—\VVV-- a

Vg

> s D

b fiz 3.1 b

Any source, be it a current source or a voltage source, drives current through 1ts load
resistance, and the magnitude of the current depends on the value of the load resistance. Fig
3.22 represents a practical voltage source and a practical current source connected to the same

load resistance Ry .

Ry

33
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Vs I AN AW AW AN _® R RL

(a) (b)
Figure 3.22

From fig 3 22 (a) the load voltage can be calculated by using Kirchhoff™s voltage law as
Var=Ve-II R:

The open circuit voltage Vo=V

V.

-

3

The short circutt current L=

R,

from fig 322 (b)

I =L-I=L-{Van'R1)
The open circuit voltage Vo= LRy
The short circuat current L.=1,

The above two sources are said to be equal, if they produce equal amounts of current
and veltage when they are connected to identical load resistances. Therefore, by equating the

open circuit votages and short circuit currents of the above two sources we obtain
Voc=LR1=Ve

L=L=VRy

It follows that
Ri=R:=Rs; V&LR:
where R: 15 the internal resistance of the voltage or current source. Therefore, any

practical voltage source, having an i1deal voltage V; and internal series resistance R: can be
replaced by a current source I:=V:/BE: in parallel with an internal resistance E. The reverse
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tansformation 1s also possible. Thus, a practical current source in parallel with an internal
resistance B; can be replaced by a voltage source V:=LR; in series with an internal resistance

R

Example 3.10 Determine the equivalent voltage source for the current source shown in fig

323

Figure 3.23

Solution: The voltage across terminals A and B 1s equal to 23 V_ since the internal resistance
for the current source 1s 5 €, the internal resistance of the voltage source 1s also 3 Q. The

equivalent voltage source 15 shown in fig. 3.24.

30

—\VWVV

s

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown m fig. 325

30Q

D

35
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Solution : the short circuit current at terminals A and B 15 equal to

E=50530=166 A

166 A

@ .
:) 30Q >

Fig 3.26

B

Since the internal resistance for the voltage source is 300, the internal resistance

of the current source 1s also 30 0. The equivalent current source 1s shown 1n fig. 3.26.

36
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NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network.
Circuit: It is the combination of electrical elements through which current
passes is called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral :It is the circuit whose parameter and characteristics change with
change in the direction of the supply application.
Bilateral: It is the circuit whose parameter and characteristics do not
change with the supply in either side of the network.
Node: It is the inter connection point of two or more than two elements is
called node.
Branch: It is the inferconnection point of three or more than three elements is
called branch.
Loop: It is a complete closed path in a circuit and no element or node is taken
more than once.
Super-Position Theorem :
Statement :" It states that in a network of linear resistances containing more than
one source the current which flows at any point is the sum of all the currents
which would flow at that point if each source were considered separately and all

other sources replaced for time being leaving its internal resistances if any".
R

- E'.-_'

Explanation :

Considering E1 source
H Ry :

Step 1.
Ro&r are in series and parallel with R3 and again series with R

37
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{_R&-rg_z |l Rﬁﬂ

Considering E2 source.Rj&r> are series and R3 parallel and R; in series

(Rytr1) [| R3
= Ri1+r1 )R = (say) " s
R.+r.+R= & : —Wh
Rh=n+Rr+nr N
I B f s T
2 =R|E:|_ B
_In(Rytn)
_R1+r1+R3
S IxRs
PRt tRs
Step —3

Current in Ry branch=75 -1
Current in B branch=7-7

I3

The direction of the branch current will be in the direction of the greater value
current.
Thevenin’s Theorem :

The current flowing through the load resistance Ri connected across any two
termjna}!_s A ande of a linear active bilateral network is given by

gy 8 =
Ru+Rr R:+Rp

Where Vi, = Vi is the open. circuit voltage across A and B terminal when Ry

is removed.

R; =Ry is the infernal resistances of the network as viewed back into the open

circuit network from terminals A & B with all sources replaced by their internal
resistances if any.
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Explanation :

Step — 1 for finding Vi,

Remove Ry temporarily to find V.
Ry

MW
g " [
|

__E
TRy
1 1
V:rn':IRE

Step — 2 finding R
Remove all the sources leaving their internal resistances if any and viewed from

open circuit side to find out R; or Rsh.

R,

A A
LA b2
r ::R_ h
B
Ri=(Ry+7) || R
(R *nR
Ri= :
Ri+r+ s
Step —3

: L B

Connect internal resistances and Thevenin®s voltage in series with load

resistance Ry.
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Where Rip=thevenin resistance

Vi =thevenin voltage

Iiy=thevenin current
R;= (RIF’;._ ) || Rz 4
II=R—R =—"

th 1 R;+R;
Example 01- Applying thevenin theorem find the following from given figure

(i)  the Current in the load resistance Ry of 15 Q

0 A
"ll'll'l".'l'l'l' b
=12 >
-l 3z 150
P
r= 102
o
B

Solution : {i} Finding Voc
— Remove 150) resistance and find the Voltage across A and B

i A

LL bl

ARAR
Tewy
-
bt
9]

2wy
=10 ]

Vor IS T%lf xlraltage across 12 Q resister
%12 —
= =18V
12+3+]

ac

(ii) Finding Ry,
Ry, is calculated from the terminal A & B into the network.

The 1 () resister and 3 (1 in are series and then parallel in

AR AR
b LA

YAy
LAAL

Rih=3+1//12 2
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=

v 18 Yo
(ili) lin== —=—= =1 A. l L

Rp+R 1543
Example 02: Determine the current in 1 resistor across AB of the
network shown in fig(a) using thevenin theorem. Solution:The circuirt can

be redrawn as in ﬁ (b).

fig (a).(b).(c).(d) respectively

Step-1 remove the 1€ resistor and keeping open circuit .The current source is
converted to the equivalent voltage source as shown in fig (c)

Step-02 for finding the Vi, we'll apply KVL law in fig (c)

then 3-(3+2)x-1=0

x=0.4A

Vip=Vap =3-3%0.4=1.8V

Step03-for finding the Ry,.all sources are set be zero
Ri=2//3=(2*3)/(2+3)=1.2Q2

Step04- Then current Ii;=1.8/(12.1+1)=0.82A
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Example03: The four arms of a wheatstone bridge have the following

resistances .
AB=100Q2.BC=10Q2.CD=4Q.DA=50Q.AA  galvanometer of 20Q

resistance is connected across BD. Use thevenin theorem to compute the current
through the galvanometer when the potential differencelO0V is maintained
across AC.

Solution:

- _12'-"“—1

step 01- Galvanometer is removed.

step02-finding the Vi, between B&D.ABC is a potential divider on which a
voltage drop of 10vtakes place.
Potential of B w.r.t

C=10*10/110=0.909V Potential of D
w.r.t C=10%4/54=741V then,

p.d between B&D is Vg,=0.909-

.741=0.168V Step03-finding Ry
remove all sources to zero keeping their internal resistances.
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Rsh =Rpp=10//100+50//4=12.7902
Step04;
lastly I=Vin/Reh TR1 =0.168/(12.79+20)=5mA

Norton's Theorem

Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to
the current which would flow in a short circuit placed acress the terminals and
parallel resistance is the resistance of the network when viewed from the open
circuit side after replacing their internal resistances and removing all the
sources.

OR
In any two terminal active network the current flowing through the load
resistance Ry is given by I xR

I: = g
IR:' = Ry

Where R; is the internal resistance of the network as viewed from the open ckt
side A & B with all sources being replaced by leaving their internal resistances
if any.

I, is the short ckt current between the two terminals of the load
resistance when it is shorted
Explanation :

R

MWW i

Step—1
A &B are shorted by a thick copper wire to find out I
I.=E/R1+r)
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lsg
R R

B

Ie =E/(Ry 1)

Step —2
Remove all the source leaving its internal resistance if any and viewed from

open circuit side A and B into the network to find R; .

A
'y +

r By =

*H

Ri=(R1+7) || Rz
Ri=(Ri+nR: (R +r+R2)

e (1) ga. §

Step —3
Cm}nect Iﬁ: & R; in parallel with Ry
=
_[:RI : Br :

Example 01:Using norton's theorem find the current that would flow through

the resistor R; whenit takes the values of 120Q.24Q&36€2 respectively in the fig
shown below.
Solution:
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Bty

1
-
'y
=0 1

Step 01-remove the load resistance by making short circuit. now terminal AB
short circuited.
Step 02-Finding the short circuit current I,
First the current due to E; is =120/40=3A.and due to E» is 180/60=3A.
then I,.=3-+3=6A
Step 03-finding resistance Ry
It is calculated by by open circuit the load resistance and viewed from open
circuit and into the network and all sources are taken zero.
RN=40//60=(40*60)/(40+60)=24Q
i) when Ry =120, I; =6%24/(24+36)=4A
ii) when R; =240 I; =6/2=3A
iii) when R; =36Q I; =6*24/(24+36)=2.4A

Maximum PowerTransfer Theorem

Statement : A resistive load will abstract maximum power from a network
when the load resistance is equal to the resistance of the network as viewed
from the output terminals(Open circuit) with all sources removed leaving their
internal resistances if any

Proof:

I

I

F

th
Ri + RI

A

i

fIE_

Power delivered to the load

"2

resistance is given by

P=FR

.

Vin -[ .
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= PQ,IRL

(Ri+RL)
Power delivered to the load resistance Ry will be maximum

“?'J’]:uenﬁ =0

dRr .
d 7R
5 & L -
drR (R +RY
~V (R+R) -VR*2(R+R) =g
(R_+R ) }“
PR+ R VIR %2R+ RL)=0
fi|

TVl R+ Re) — 2V  RL(Ri+ Rp) =0
TVl (Ri+ R)Y =20 Ry (Ri+ Ry)

R+ R =2R
T Ri=2Ri—R:
o Rf = RL
Vﬂ!‘-_‘l 2
{PL:]D]DI: {R +R) %
5 i I
!
“4RA
L
= P: - xR
1]2 L
(Pr)max = [~
L
MILLIMAN®S THEOREM :

According to Millimans Theorem number of sources can be converted
into a single source with a internal resistance connected in series to it.if the
sources are in parallel connection.

According to the Milliman*s theorem the equivalent voltage source

Ex_l + F xi +E>¢_I+__
1 R 1 R : R

| P - |
—= ==
RRR Ri FR: SR =g,

[}

‘Ea E; Ei

4b
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=GR e

1 2
EEE,

el
R R—R

G+ v+

ot J I N ST 8 CE S
+ +Gs +

Example — Calculate the current across 5Q resistor by using Milliman*s Thm.
Only

A
i0 R= j 25
R, Ze Sl 1
E: v E: 12v Ri= 46
T B
Solution :- Given ,
Ri=2Q, R=6Q 3 Ri=4Q, Ri=5Q
Ei=6v, Ex=12v
the resistance R is not calculated because there is no voltage source
E E
T A S .Ej.
X ® E
Ve E=-21...1 . 1
R"R "R
1 2 3
6 12
= 4 D 4=
=3 4
W S
2 6 4
3+0+3 K]
=6+2+3 =11x2 =654
12
R= 1 =1=12 =1092
.4 L1 1l 11
R+ R+R 12
Voc 6.54
I = = = 1.074Amp

1.09+5 1.09+5
COMPENSATION THEORENM :
Statement :
It*"s states that in a circuit any resistance ,.,R” in a branch of network in
which a current .I*" is flowing can be replaced. For the purposes of calculations
by a voltage source =- IR

OR
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If the resistance of any branch of network is changed from R to R +4R
where the current flowing originaly is i. The change current at any other place
in the network may be calculated by assuming that one e.m.f — I A R has been
injected into the modified branch. While all other sources have their e.m.f.
suppressed and ,,R™ represented by their internal resistances only.

il 4 i22.54 iz -2,5A
= dhy Bse200 R; =200
Exp - (01)

Calculate the wvalues of new currents in the network illustrated , when the

resistor R3 is increased by 30%.
Solution :- In the given circuit , the values of various branch currents are

L =T75(5+10) £ 34

i

I =I :—=2.5Amp. ‘,15.'- ‘
' 3 40 < ﬂ-v\‘) is
s =10 B =R
Now the value of R3. when it increase 30% 200 T i)
R3 =20 +(20%0.3) = 2600 R, '8 26Q
1%
IR=26-20=60) - &
=15V
¥ =—IAR 'T-
=-25%6 b %
| ;
=—=15F <MW s 13 =2kmp
x- B 100 'l 164
j20Q= 55 + hﬂgq} =" 15= 50 LR, EE R
: i $ 200 T 269
05 21£+25= T30 =0354mp sy
A 4
=% = — 15y
q" 0.Lamp ¥ 5§
z 5
=0.5%20 =
I 0.44m
- T

Lh"=53-04=464mp

'=0.1+25=264mp
R"=25-05=24mp
RECIPROCITY THEOREM :
Statement :
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It states that in any bilateral network, if a source of em.f _E™ in any
branch produces a current ,.I** any other branch. Then the same e.m.f . [E™ acting

in the second branch would produce the same current ..I"" in the 1* branch.

Step — 1 First ammeter B reads the current in this branch due to the 36v source,
the current is given by

4 =12
412="1% =30

R =2+4+3=00) 28 in

Ak A A FAy Ny

E Ty Teyy
I=  9=4dmp - 10
4%x12 48
[p=——5— 28 _ 2
B” 124341 16 120

Iz =current through 1 Q resister 40 B

YT
Twyy

34Amp

Step — (IT) Then interchanging the sources
and measuring the current

6% 12 12
6Q(120=F + 12=18 =4Q

R = 4+3+1=8Q

=
I= 36 _ 4 54mp. I4 _Aox12 3.4mp Transfer resistance = r .2 =12¢),
g 6+2 r 3
COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through
the magnetic circuit.
There are two types of induced emf.
(1) Statically Induced emf.
(2) Dynamically Induced emf.
Faraday™s Laws of Electro-Magnetic :
Introduction — First Law :—
Whenever the magnetic flux linked with a circuit changes, an emf is induced in

it.
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OR
Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :—
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.

OR
The emf induced is directly proportional to the rate of change of flux and
number of turns

Mathematically :
e oc dg
dr
goc N
= LD
(@] =—N
r e &
Where e = Induced emf
N =No. of tumms

¢ = flux
.- ve" sign is due to Lenz"'s Law
Inductance :—

It is defined as the property of the substance which opposes any change in

Current & flux.
Unit :—  Henry
Fleming’s Right Hand Rule:—

It states that “hold your right hand with fore-finger, middle finger and
thumb at right angles to each other. If the fore-finger represents the direction of
field. thumb represents the direction of motion of the conductor, then the middle
finger represents the direction of induced emf.”

Lenz’s Law: —

It states that electromagnetically induced current always flows in such a
direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it
opposes the change of magnetic flux.
(2) Dyvnamically Induced emf :—
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B B
WA WYY WA SN
_'l.' 1.]‘ % ;
9‘\

In this case the field is stationary and the conductors are rotating in an

uniform magnetic field at flux density .. B” Wh/mt” and the conductor is lying
perpendicular to the magnetic field. Let ./ is the length of the conductor and it
moves a distance of ..dx" nt in time ..dt" second.

The area swept by the conductor =L
dx Hence the flux cut =ldx. B

Bldx
Change in flux in time .,dt"" second = dt
E = Biv
dx
Where '= 4t
If the conductor is making an angle ..6** with the magnetic field. then
e = Blv sin@ |

(1) Statically Induced emf :—
Here the conductors are remain in stationary and flux linked with it
changes by increasing or decreasing.
It is divided into two types .
(i)  Seli-induced emf.
(1) Mutually-induced emf.
(i) Self-induced emf : — It is defined as the emf induced in a coil due to the

change of its own flux linked with the coil.
L

LILILR

If current through the coll is changed then the flux linked with its own
turn will also change which will produce an emf is called self-induced emf.

Self-Inductance :—
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It is defined as the property of the coll due to which it opposes any
change (increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :—

It is defined as the ratio of weber turns per ampere of current in the coil.

OR

It is the ratio of flux linked per ampere of current in the coil
1st Method for ‘L’ :(—

N @
L= ]
Where L = Co-efficient of self-induction
N = Number of turns
¢ = flux
I=Current

2nd Method for L :—
We know that
No
=
=LI=Ngp

_THare a
LT =-N_

Where L = Inductance
d ¢
er= _N;df 18 known as self-induced emf,
dI
When ¢ =lamp/ sec.
e=1 volt
L =1 Henry
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A coll is said to be a self-inductance of 1 Henry if 1 volt is induced in it.

When the current through it changes at the rate of | amp/ sec.
3rd Method for L :—

M M AN
L= EEE
Where A = Area of x-section of the coil

N = Number of turns

L = Length of the coil
(ii) Mutually Induced emf : —

It is defined as the emf induced in one coil due to change in current in
other coil. Consider two coils ,,A*" and ,,B™ lyving close to each other. An emf will
be induced in coil ..B" due to change of current in coil ,,A" by changing the
position of the rheostat.

A B
Mutual Inductance :—

It is defined as the emf induced in coil ,.B* due to change of current in
coil ,,A™ is the ratio of flux linkage in coil ,,B* to 1 amp. Of current in coil ,,A™.
Co-efficient of Mutual Inductance (M)

Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.
1st Method for ‘M’ 1 —

NQ

M= g

L

N> = Number of turns

M = Mutual Inductance

@ = flux linkage

I; = Current in ampere
2nd Method for M :—

We know that N
M=—
h
T ML =Ny
T =ML =N
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did @, )
ere e =-N 1z known as mutually induced emf

ey = —lvolt
Then M = 1 Henry

A coil is said to be a mutual inductance of 1 Henry when 1 volt is
induced when the current of 1 amp/sec. is changed in its neighbouring coil.

3rd Method for M : —
M M ANN
M=—m—T—" 72—
!

Co-efficient of Coupling :

Consider two magnetically coupled coils having N and N> turns
respectively. Their individual co-efficient of self-inductances are
L MoM,aN7
t=" 1
¥
_Hg .Hr s‘i.}'rrzh
{

The flux ¢@; produced in coil ,,A* due to a current of I; ampere is
LI MM AN® T

- : - w |

Y ] ™M
M AM ANT

= TR i il

Ly =

i i
Suppose a fraction of this flux i.e. K¢ is linked with coil , B
Then ar= K191 wp;, = KiViN) (1)
% 1M, M, A
Similarly the flux @7 produced in coil ., B* due to I amp. Is
MM AN I
1 r 12

&

2 !
Suppose a fraction of this flux i.e. K;@; is linked with coil , A™

¥ ENN
Then M= 2292 xn= % | —— —- (2)
Ig 1 _-HD ‘H,.’i

Multiplying equation (1) & (2)
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_ KEN'N,
Mi= oo XM
11 My M, 4
“E I I
[QK1=K-—K]
M*=K’LL
, M
R
M
»K= \LL

Where .. K" is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance

between two coils to the square root of their self- inductances.

Inductances In Series (Additive) :—

Fluxes are in the same durcction

Let M= Co-efficient of mutual inductance
L = Co-efficient of self-inductance of first coil.
L, = Co-efficient of self-inductance of second coil.
EMF induced in first coil due to self-inductance

Mutually induced emf in first coil
e dar
My ==-M gt
EMTF induced in second coil due to self induction

_dl

er: =— L dr
Mutually induced e&nf in second coil
/|

ol it o et
Total indyced e
dyced emyf
€ e
L1 K2 A3 ¥ i)

If..L™ is the equivalent inductance, then

+ e + e
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dl dl dl dl dl
L gt=—-L1 gt-M dt L df —M dt
dar  dl
T oL dt=— 4ty Ly 2M)
=I=I+1+2M

Inductances In Series (Substnactive) :—

‘ i

{Flazes are opposie i dirsction)
Let M = Co-efficient of mutual inductance
L = Co-efficient of self-inductance of first coil

L, = Co-efficient of self-inductance of second
coil Emf induced in first coil due to self induction,

[

ern =—L1 df
Mutually induced emf in first coil
e dl dl
M = — ‘M‘—" = J.M"_
dt dt
Emf induced in 53:{011{1 coil due to self-induction
e =Ly
Mutually induced emf in second coil
€ dl dl
M: = — _'1’.{_ ZIH_-

Total induced et ® | %

e=e +te +geg¢ +eg

L L2 My Afs
dar _ _ d _di _di dr
Then - L & L1 . & ) Y + M r:ft+ M it
~—pdl=—dl +p 20 SI=L+L -2M
¢t dar 1 2 1 i

Inductances In Parallel : —
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Let two inductances of Z; & I are connected in parallel

Let the co-efficent of mutnal inductance between them 1s M.

I=fi+n
d —di +di

di , —di — 5
di =L -M) d =(2-M) &
= aip = (L2 —M) ap
& (L-M)d

dl=d +di
d dt

=(L,—M) di; + diy
(L -M)d dr
1

|

i

If..L" is the equivalent inductance

_ . odi_ . dii diz
e=bi =L S "M o5

dr L dt dt

di

Substituting the value of dr
di_1 LM

+ A=
tilL L L}L_‘M df
Equating equation (3) & (5)

(1)

(3)

—eeeee(4)

()
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- #1& =-Li v:w + M=
L-M « L L-M
LM 1 L,-M

o [-M+l=LL L[ -M +M

1 1
Ly-M+L—M 1 . LM+ M-M ?
LI_M L Ll_M
= L+L: =284 =1 L.L: -
—ET ML Li=M

1
S1+L—2M= [ [LiL 7]
LL -M
sL= L+L-IM

1 Pl
When mutual field assist.

IL -M
L= [+L+2M
When mutual field opposes.

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

The Ln% equa;tic%n are from fig(a)
vi=Li  +M

A
Pr=L1-2 4 pp
dt dt

The loop equation are from fig(b)

di ,  d
h=li—-M) dr¥ Mgt (G+i)
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di , d
n=L-M) di +Mdgt (a+n)
Which. on simplification become

di di
m=L_ M :
dfchf__'+
Virly M
dt dt

So called conductively equivalent of the magnetic circuit . Here we may
represent Za =1.4-M.
Zp=(L>-M)and Z¢c =M
In case M is +ve and both the currents then Za =1L1-M ., Zg=1>-M and Zc =
M. also . if is — ve and currents in the common branch opposite to each other
Za=11tM.Zg=1,+Mand Zo =- M.
Similarly, if M is —ve but the two currents in the common branch are additive.
then also.
Za=Li+M.Ze=12>+Mand Zc =- M.

Further Za , 7Zs and Zc may also be assumed to be the T equivalent of the
cireuit.
Exp.-01:

Two coupled cols have self inductances Li= 10x10"H and Lo=20%10
*H. The coefficient of coupling (K) being 0.75 in the air. find voltage in the second
coil and the flux of first coil provided the second coils has 500 tums and the circuit
current 1s given by 11 = 2sin 314.1A.
Solution :

M=K \[,L;

M=0.754 10%107 =
20107 = M=106x10" H

The voltage induced in second coil is
di | di

V2=M df :}’ dt

=10.6 x107—y, (2 sin3149)

=10.6 X107 X 2 X 314 cos 314t
The magnetic CKt being linear,
Ng 500% (K@)
M= 11 = i
—i=
114

=3
Q= M x;= 10.6x10 % 7 sin 314r
500=K 1 500%0.75

—5.66 x10 sin 314t
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@ = 5.66 x107 sins 314z

Exp. 02
Find the total inductance of the three series connected coupled

coils.Where the self and mutual inductances are L1=1H.L,=2H.1L3=5H

Mi>=0.5H, M>3=1H, M3 =1H
Solution:
La =Li+Mj2tMi3
=1+20.5+
=25H

=2+1H0.5
=3.5H

=5rl+l

=2.5+3.5+7
= 13H (Ans)
Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of
this flux which links the turns of B.

Solution: We know that
_ Mal,

€y = _:fr
11.25

=EM — ———
M /nym Te0p = 7-omA

1OW,

[yom a8 n i 0 Ba o 1529 1 94 10-3WH/A
3 W 750
M 7.5+107*

h=——=—————=05=50%
JIL, 154107

B0
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A.C FUNDAMENTAL

Direct Current Alternating Current

"u'-

-
%,
W

1

t— LS
(11D.C. always flow In one (IJAC. is one which reverse
direction and whose magnitude periodically in
remains constant.
direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.
3 7Y ¥ . P
(2} Bk et ST hBaUEhoH (2} Low cost of production
(3) (3)| By using transformer A.C. voltage

I It is not possible by D.C.
Because D.C. is dangerous to the
transformer. A.C. can be transmitted to a long
(4)| distance economically.

can be decreased or increased.

(4)

| = ; ;
Its transmission cost is too high.

Definition of A.C. terms :-
Cyecle : It is one complete set of +ve and —ve values of alternating quality
spread over 3607 or 2[] radan.
Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T
Or
It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve
half cycle.
Phase : It is defined as the angular displacement between two haves is zero.

3
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OR
Two alternating quantity are in v
phase when each pass through their zero I
value at the same instant and also attain T
their maximum value at the same instant in
a given cycle. il =3

V=VFysimwt
I =1, sinwt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.
OR
If the angular displacement between two waves are not zero. then that is

known as phase difference. i.e. at a particular time they attain unequal distance.

50— NS

OR

Two quantities are out of phase if they reach their maximum value or
minimum value at different times but always have an equal phase angle between
them.

Here V=V, sin wi

i = Iy 510 (WE-@)

In this case current lags voltage by an angle ...
Phasor Diagram :
Generation of Alternating emf :-

)
Consider a rectangular coil of , N turns, area of cross-section is .,A" nt” is
placed in x-axis in an uniform magnetic field of maximum flux density Bm

web/nt". The coil is rotating in the magnetic field with a velocity of w radian /
second. At time t = 0, the coil is in x-axis. After interval of time .,dt” second the
coil make rotating in anti-clockwise direction and makes an angle .,8" with x-
direction. The perpendicular component of the magnetic field is ¢ = ¢@n cos wt

According to Faraday*s Laws of electro-magnetic Induction

b2
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d @
e=-N"gt

=-—nd (@ coswr)
dr
= =N (—@Qm W cos wr)
= NP 3101 WE
= 2TTANVQ,, sin wt(Qw = 211f)
= 2TTNE  Asin wt
a=FE, sinwr
Where E,=2miNB, A
f —frequency in Hz
By, — Maximum flux density in
Wh/mt” Now when 8 or wt = 90°
e=En
ie. Ep=2niNBpA

RN S e
n P

Root Mean Square (R.M.S) Value : —
The r.m.s. value of an a.c. is defined by that steady (d.c.) current which

when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for
the same time.

Sinuscdial alternating current is

i=Iysinwt=I,sin0
The mean of squares of the instantaneous values of current over one
complete cycle

=" _r.dg
0 (2 —0)
The square root of this value is

i_ag
- | _r
R o 21
- .ilz (.50 8 40
UE!TJJ?

B3
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_I. 22 o
— IIH Sul:
8 J6 \2mo

[T 3 2pl —cos? H.:zﬂ

= |I _!'_.l'

'\erﬂ 2

Im 12J" (1 —cos 28 ]dﬂ
14

7 ,8-sin28 7

Average Value :—
The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred

by that alternating current during the sae time.
The equation of the azjtﬂ:gatjng current is i = I, sin ©
L= |
o(m-0)
-k sin 8 I

=:J- » T d@ = J:_Lr sin 6. df

I[ ::n:JEE':rT ! [—cosﬁ—{cosﬂﬂ]

T T
I
=7 [1-0¢-1)]
2 L
Im' =.—F
;= 2% Maximum Current
T

Hence, I, = 06371,
The average value over a complete cycle is zero
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Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.

- MaxamumValue _Jm _ 5 =1 4.
RT3 0 S Vatue "{m g =1

Y 2
Form factor : - It is defined as the ratio of r.m.s value to average value.
KF= rasValue _0.707L, _ 5 —1 414
= g =i

Average Value 06371,
Kf =]1.11

Phasor or Vector Representation of Alternating Quanfity :(—

-

i

An alternating current or voltage. (quantity) in a vector quantity which
has magnitude as well as direction. Let the alternating value of current be
represented by the equation e = Ey, Sin wi. The projection of Ey, on Y-axis at
any instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a
rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

Al e1 = Ep sinwi

At ex=Ep: sinwh

Addition of two alternating Current :—

Let gy = E,,, sin wt
&1 = Epe sin{wt — @)
: E; E
The sum of two sine waves of the same
frequency is another sine wave of same 3
frequency but of a different maximum value and = >

Phase.
e= ‘h. nrz12 + ezz + Jeje: cosP
Phasor Algebra :—
A vector quantity can be expressed in terms of
(1)  Rectangular or Cartesian form
(ii)  Trigonometric form
(1ii) Exponential form

b5
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(iv) Polar form

E=a+jb
= E(cos@ +jsmn B)
Where a = E cos 0 is the active part
b =E sin 6 is the reactive part

6=tan'?_ =Phase angle

i
j =4-1(90% )
7 =-1(180%)
7 ==7270%)
=1360°)

D

Esin g

EL‘GSE

(ify Rectangular for :-
E=atjb
tanB=5/a
(if) Trigonometric form :-
E=E{cosB *+jsan )
(ilify Exponential form :-
E=Ee' "
(iv) Polar form :-
E=E'+eE=a+b)
Addition or Subtration :-
£y =a1 +jb
E=a+jb
E B =(a +ﬂ2)i$§11 + i
b+

fant 1 3
R
Multiplication : -
Ey x By = (m +jay) X (a1 + b2 )
= (qiax — b ) +j(aia + hibn )

b6
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+
ab ba

@=tans ‘I 17
aa; — bibs

E1=E1.ﬂﬂl

E=E/26,
E1*xEy;=EE Z@+p
Division :-

E=E/206,

B-B4%e E

L= L= 1 /6 -6
E, E£LO, E

A.C. through Pure Resistance :—
Let the resistance of R ohm is connected across to A.C supply of applied

voltage

é !
R — N
~ !
F
¢ = Exsin Wt or v = Vgsin wi
e = E,, sin wt (1) w -
Let .I" is the instantaneous current .
Heree = IR
Ti=eR
[ = EpSIMWl/Re--memmmeemmme «2

By comparing equation (1) and equati{m'[zj we get alternating voltage
and current in a pure resistive circuit are in phase

Instantaneous power is given by

P=ei

o e & = Emsin Wt
i [ = ImSin Wt

=_m. m Teind wr T
2
O 5 T t—>

=2 2.{1-cos2wp)
Ey ly Eg, 1,
WL, e Lo 7 .cos It

;f.- | ] !
W Rl W N

F

VT Vir Eq
ieP= " Ta- M. Th cosdw

b7
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v I
Where —=—=7 is called constant part of power.

b

1
"2y =2 -cos2wt1s called fluctuating part of power.

VI
The fluctuating part _» = cos2wt of frequency double that of voltage and current 2

waves.
4 -
=F

L S

Hence power for the whole cycleis P= 5
T P=VI watts

t\_:f'|| g

A.C through Pure Inductance :—
Let inductance of ,,.L* henry is connected across the A.C. supply

e
NS

v = Vmsin wt

it (R T S ——— . (1)
According to Faraday™s laws of electromagnetic inductance the emf induced

across the inductance

di
di V=L d v = Vsin wi
I
'(}-} 15 the 13%‘;: of change of current i=T_malwt—%!D)

Fsinmwt=1L

s S

ity T »

dt L

V.
=di= [ smwtdt
Integrating both sides,

V
Jai= 7" sinwtar

¥V coswi

I: -l e

1 w
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V' coswit

i=—_a

wl

) F,
1= — B coswt
wl

wl
e
=—g sinwt— [QXr =21/ =wl]

Maxi!;mlm value of i is -
e when  a,wr— IS unity.
X1 2
Hence the equation of current becomes 7 = I, sin{wt — 17/ 2)

So we find that if applied voltage is rep[resented by v = F,, sin wr , then current
flowing in a purely inductive circuit is given by

i = Lysin(wt — 1T/ 2)
Here current lags voltage by an angle n/2 Radian. A

I
~‘-'-1r\~a::|

]

Power factor = cos
= cos 90°
=0

Power Consumed =VIcos ¢ —x"l;
=VIx0
=0

Hence, the power consumed by a purely Inductive circuit is zero.

A.C. Through Pure Capacitance : —

1= sl wi—xi 1)
vV =Ym5in wi

IxX,

G

— NS
e i Dp T

v ="Vmsin wi

Let a capacitance of .,C™ farad is connected across the A.C. supply of applied
voltage

L S ——
Let ,g"=change on plates when p.d. between two plates of capacitor is ,,v**
g=cv

q = cVm sin wit

G
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dg d
dt=c dif (Vi sinwt)
[ =cVy Sin wt
= Wcl,, cos wit
I

= =cos wt
1} we
= = =coswr L)X =_1 = 1 isknown as capacitive reactance
Xe  owe 2Imfe
in ohm.]
= I, cos wt

= Tmsin{wt + 11/ 2)
Here current leads the supply voltage by an angle n/2 radian.

Power factor =cos @
=c0s90° =0

Power Consumed = VI cos @
=VIx0 =0

The power consumed by a pure capacitive circuit is zero.
A.C, Through R-L Series Circuit : —

L
- (0U000)__
W
“ Vr H V0L ——
(~)
N/

ge=5_=n wi

The resistance of R-ohm and inductance of L-henry are connected in series
across the A.C. supply of applied voltage

e=FE, smnwt (1)
V=TTt
BT i g
e B + I =
R
. - &
= R} +IX: ¥ Lg=tm' s
A R
% - X
= Iﬁ‘;ltk"._ L@ =tan A
R

= Xy Vi=IXL

¥ =ZLg=ia —_—

R
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Where Z= 2 +Xx; ,
=R + ;X 1s known as impedance of R-L series Circuit.
__V _Epsinwi
s :p_ ZZ @
I = Iy sm{wt — (@)
Here current lags the supply voltage by an angle .
Power Factor :— It is the cosine of the angle between the voltage and current.
OR
It is the ratio of active power to apparent power.
OR
It is the ratio of resistance to inpedence .
Power :(—
=V.i
=V, sin wt 1, sin{wr — @)
=V I 510 wit sm{wr — @)
1
= 2 Vuln 2sin wism{wt — @)
1
= 2 Ful[cos@ — cos 2wt —p)]
Obviously the power clnrls.ists of two parts.

(1)  aconstant part 2 V, 1, cosg which confributes to real power.
1
(1) apulsating component 2 F, I, cos(2wt — @) which has a frequency twice
that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.
Hence average power consumed

Vi Iy cos@
I

IL‘:'F" (] b=

N A mz cos@
=T cos
Where V & I represents the r.m.s value.
A.C, Through R-C Series Circuit : —

The resistance of ..R"-ohm and capacitance of ,.C™ farad is connected across the
A.C. supply of applied voltage
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B R A e S R (1)
R o

A AR
LA

+ Vis = Vi 5

'I.n-u.'
p
V=Va+(-iVc)
=R+ (-jlX¢)
=I(R-jXc)
V=IiZ

Where Z=R - jx-= .K.I'R: + X is known as impedance of R-C series Circuit.
Z=R-jXc

l,]—:
= VR + X

X
Z-@=tan! _¢C
R v

V=IZL—p
7
“I=zL-9 NI
= Ey sin wi
ZZ —p
E
=7 " sin(wt+ @)

= I= Iy smiwt + @)
Here current leads the supply voltage by an angle ...

A.C. Through R-L-C Series Circuit : —
Let a resistance of ..R"-ohm inductance of ..1.*" henry and a capacitance of .,C”

farad are connected across the A.C. supply in series of applied voltage

e JTTTIN__S,

e ‘»f'ﬁ-—‘*—“ Vi VC ey

(1)

e =E, sin wr

72




CNT, Semester 3%, Diploma Engineering (Electrical & Electronics)

e=Vp+li+lr
=Vr+j¥VL—jVe
=Vr+j(VL - Fe)
=SIp+j(IX—LX¢)
=IR+j(X—Xc)l

IR —XF  <to=tm X%
R
=IZLtp
Where  z=1 R+ (X1 —Xe) is known as the impedance of R-L-C
Circuit. S¢ries
If

If X1>Xc.then the angle is +ve.
X1 <X . then the angle 18 -ve.
Impedance is defined as the phasor sum of resistance and net reactance
e=IZL+p

e

T =

Emsin wit
ELEp = '
ZLxp ELxp

(1) Ifx;=>xc,then P.fwill be lagging.
(2) Ifxi<xc,then, P.fwillbe leading.

(3) Ifx;=Xc.then, the circuit will be resistive one. The p.f. becomes unity

=Ly sin(wt = @)

and the resonance occurs.

REASONANCE
It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation
at a particular frequency and the impedances being either minimum or
maximum at unity power factor

Resonance are classified into two types.

(1) Series Resonance

(2) Parallel Resonance

(1) Series Resonance :- Let a resistance of .,R™ ohm. inductance of ,L.* henry

and capacitance of .,.C*" farad are connected in series across A.C. supply
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—w—] 0000,

4,

e=E_=n wi
e = E, sin wi
The impedance of the circuit
Z=R+j(Xi—Xe)l
Z= R +(Xy —-Xo)
The condition of series resonance:
The resonance will occur when the reactive part of the line current is
zero The p.f. becomes unity.
The net reactance will be zero.
The current becomes maximum.
At resonance net reactance is zero
Ar=Xe =0
=X=Xc
~“WwWL= 1
e — W C

. 27 LC
W

1 1
Resonant frequency (%)= 2 m—2LC
N

Impedance at Resonance
Zo=R
Current at Resonance

|4

L= R
Power factor at resonance
R _R =
p_f_:—:— =1 [QZG_R]
Lo R
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Resonance Curve :-

Unity pf(upf) L

Lagging
Pf

fa fo
At low frequency the X, is greafer and the circuit behaves leading and
at high frequency the Xp becomes high and the circuit behaves
lagging circuit.
If the resistance will be low the curve will be stiff (peak).

« If the resistance will go oh increasing the current goes on decreasing and

the curve become flat.
Band Width :—
2

At point ,,A” the power loss is [; R
The frequency is fp which is at
resnnaﬂce.f 2 R

2

The power loss is 50% of the power loss at point
A

A 0 / |
B /
Hence the frequencies

corresponding to point ..B* is known as half power frequencies f; &
2. f1=Lower half power frequency
rer- f—
i s AL
F2 =Upper hEJlEif power frequency
F=pe T
.y 4
Band width (B.W.) is defined as the difference between upper half power
frequency ad lower half power frequency.
BW.=f —f=

i o

2nL
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Selectivity : —
Selectivity is defined as the ratio of Band width to resonant frequency
Selectivity = 8JI. =R Selectivity = &
£ ol 2 L
Quality Factor (Q-factor) :—
It is defined as the ratio of 2n * Maximum energy stored to energy dissipated
per cycle

Q-fact ?_rr=<~1~il.-5:aJ
-Tactor = 21
I'RT
:mg\af f
TR
_TTL.H;

I°RT

mLart
o e CADLL

T°RT
=L
m 1

- - oy
Quality factor == Jp ™ Q= =< f

R ! g 0

Quality factor is defined as the reciprocal of power factor.
I.
Qfactor==¢os @

It is the reciprocal of selectivity.

Q-factor Or Magnification factor =\Voltage across Inductor.
Iﬁ},éﬂtage aCToss Tesistor

=_4 L
IR
X
. _RI_
nfL WL
= 13 m—
RR

WL
Q- factor== o
R

Q-factor factor =V{:rl'rage across Capacotor.

Woltage across resistor
ILX

= =

InR
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1 1
=21 C =21 CR

1
Q-factor = W CRr
[t

O=WyLlx 1
- R WCR
i}

2 1
o ="
= Pp

Al
o=\Rc

1 (L
Q===
= R\C
Graphical Method :—

(1) Resistance is independent of frequency It represents a straight line.
(2) Inductive Reactance Xy = 2niL
It is directly proportional to frequency. As the frequency increases , Xr.
increases
1

(3) Capacitive Reactance X¢ = =2mfC

[ —
It is inversely proportional to frequency. As the frequency increases, Xc¢
decreases.

When frequency increases, Xy, increases and X¢ decreases from
the higher value.




CNT, Semester 3%, Diploma Engineering (Electrical & Electronics)

2]

- Xc

PR

At a certain frequency. Xp = X¢
That particular frequency is known as Resonant frequency.

Variation of circuit parameter in series resonance:
(2) Parallel Resonance :- Resonance will occur when the reactive part of the

line current is zero.

1 E
L 110
Ca | I
F c o
2 =
S
At resonance,
Ic—Iisingp=0
Ie=11 siﬂﬂi
T —E— —F sin @
o RE-F-XL 2
¥V V X
= Yo s \."IRE + X2 xR+ X
1 B
~ Xc =R°+X ,
= Rz + .-JL'LE = X;.X¢
1

“ZE= Xy Xe=WRlx C

T em &

Ic

Leos 4

-"H;IL
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Z=C
=R+X= CL

; R
=R+emfLli=C

= R+amifpilt =

L -
g
=4mifirt=  -F
2 1 L 2
- ="—'1—= ——R
rofer: C
1 1 R
Y g i
ﬁ-} 2”\ LC F I cos
fo = Resonant frequency in parallel circuit.

Current at Resonance =
_ ¥ R
‘pﬁ +XL: \I.'R: +XLE

R+X;
VR
= 7
=FR=VLC —
LIRC v

Dynamic Impedence
L/ RC — Dynamic Impedance of the circuit.

or, dynamic impedances is defined as the impedance at resonance frequency in

parallel circuit.
Parallel Circuit :—
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The parallel resonance condition:
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When the reactive part of the line current is zero.

The net reactance is zero.

The line current will be minimum.
The power factor will be unity

Impedance Z;=R;+;X;

=Ry —jXc
Admittance ¥ =1 = !
; zl :+i I
(R1+iX1)
=(R+iX L){R —jXI)
Rty
= R+X 7
B is] X1
N=R,+X . JR,+x ,
Y i 4 [ L
Admittance : =1 =ﬂ—..r_,]ﬁ—-
z".-. [ c
(Ry+iX¢)
={A2—jX WR+X )
R +-I:XC 2 C
= 2 3 5
R22+XCJ
Ih= ke, 47 Xe
17 pax X 19 gk,
1 C 1
Total Admittance Admittance ! =L + _I__
Z VAR
;‘LI’:F1+I’}2
o A‘YL __.R_Z _XC
=¥Y=R*+X1-jJR“+X 1+R“+X ,+j R°+X 1
1 R L 1 E ]X c 1 o
B 1 Rm2 z X.:
R v, Max.  Rlax, Eax,
AtResnnafce,
3 A

R4X " R:+X ;=0

X & Y
>+ X 2= +X 2
[ L 3 c

= XI(R:E {&3): %—’c(ﬂf L f'ff]' )
B (R1+4?T_f_h)

amfcC | 2T
= 2MfLR '+ L K +21’le
1 ey W C

= LR

g1




L R 2’ 3
= IACt -2 C - 2mfLR;
1 L 3 i 2
=2 =i =2ml— -R
W C c
L _pg?
%3 C .E._CR =
> 4= T
L : I-CR;:!
o =i
i TSGR
-4 Foa=__ b,
IC IL-CRsy
1 L-CR 1
4w IC I-CRy

i II IL-CR =
-uf: f'_kl
Ve L-CRy
1| L~CR, .

5 2_7?\" I’C-ICR:

fis called Resonant frequency.
Ifz* =0
Thenf= 1 I|'£—§RT
"'I—
1 I'I.—CR 7
o\ ¢
g R
mz\¢
1 [T~ R?

— fo———
mVre &

IfR; and R> = 0. then

ST E
4 2mVIic

1 1
F= R —
2\ 2mIC

Comparison of Series and Parallel Resonant Circuit :—

Item Series ckt (R-L-C) | Parallel ckt (R—L and
C)

g2
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[] Impedance at Resonance Mininmm Maximum
™ Current at Resonance 14 v
Maximum= R Minimum= ([ / CR)
™ Effective Impedance R L
CR
™ P.f. at Resonance Unity Unity
™ Resonant Frequency 1 1 ,"1_—£
znf LC ::nll LC =42
W8I Mﬂgﬂiﬁes Voltage Current
[] Magnification factor LT; FRHIL

Parallel circuit :—

I

I1 Ri CLLITD

+1 i: R.j C .
—n
L

v.f

Zi=Ry+jX, =pARE+ X, % Lo

Zi=R—jX¢ =\R2*+ X2 L ~qy
I =V =V /s-p=IL-9
le:;u z.
Where =TT
Zy

Here Y — Admittance of the circuit
Admittance is defined as the reciprocal of impedence.
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I =VY = 1
I—RT‘+_}XL
_ _V i i
1,=F =V Lo=V¥sLg=1lLg
21/_’ —qﬂ1 E.":

I= ','r-"l2 + 1%+ 2415 cos{@) +¢2)
I=hLZL -0 +LZLQ:
JLIL%"—

The resultant current “I” is the vector sum of the branch currents I; & I

can be found by using parallelogram low of vectors or resolving I> into their X
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—and Y- components ( or active and reactive components respectively) and then

by combining these components.

Sum of active components of I1 and I =11 cos g1+ I cos @2 Sum

of the reactive components of Iy andI o =Ip sin gy -1 § s1n ¢

EXP-01:

A 60Hz voltage of 230 V effective value is impressed on an inductance of

0.265 H

(1) Write the time equation for the voltage and the resulting current. L et the

zero axis of the voltage wave be att=0.
(ii) Show the voltage and current on a phasor diagram.
(iii) Find the maximum energy stored in the inductance.
Solution :-
Vaax = A2V =1 2 % 2307
f=60Hz, W=2nf=2mx60=37Trad/s.
x1 =wl =377 x0.265 = 100Q2
(1)  The time equation for voltage 1s  7(#) =230.,2sin 377t
L = Vol % =23042 /100, = 2.8 23
@ = 90° (lag).
QQ Currente quation is.
i) =232 sin(377t— 1/ 2)
or =23+2cos377t
(i) Iti

1 % ;e
(i) OF Emax = DLl “mm= "2 %0265 % (23+2) =14J

Example -02 :

The potential difference measured across a coll is 4.5 v, when it carries a

direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor

when it is supplied by 50 v, 50 Hz supply.
Solution :

Let R be the d.c. resistance and L be inductance of the coil.

R=VII=45/9=050
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With a.c. current of 25Hz, z = V/1.

24
_9 =2.660
x =+vZ°—R* F.266°-05
=2.620
X;=2WX25% L
x; = 0.0167Q)

At 50Hz
x; =2.62% 2 =7524()
Z=+05+524
=5060

I=50/526=95A

P=I/R=9.5" x 0.5=45 watt.
Example - 03 :

A 50- pf capacitor is connected across a 230-v, 50 — Hz supply. Calculate
(a) The reactance offered by the capacitor.

(b) The maximum current and
(c)  The r.m.s value of the current drawn by the capacitor.
Solution :
(@) = L. L =360
we 2nfe 2mx350x50%10°
(c)  Since 230 v represents the r.m.s value
QI =230/ =230/63.6=3624

(b) I =lom:* {2=3.62%/12=5114
Example — 04 :

In a particular R — I series circuit a voltage of 10v at 50 Hz produces a
current of 700 mA. What are the values of R and L in the circuit ?
Solution :

(i)  z=®+@Qm=s0Ly

- /B +93696L7
V=1z
10 = 700 x107(R* + 986961 )
V& +986961° ) =10/700 107> =100 / 7
R+ 98696L" =10000/ 49 1)
(if) Inthe second case Z= R:+ (2 % 75L)

Q10 = 500 x10™ |R? + 2220662 ) = 20
| nd T
JR"+222066L ) =20

56
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R + 22206611 = 400 (1)
Subtracting Ea.(I) from (ii), we get,
2220661° — 986961° = 400 — (10000 / 49)

=123370L° = 196
5 196

L =7123370
| 196
~ L=\123370=0.0398H =40 mH.
Substituting this value of L in equation (11) we get R: + 222066L: (0.398) = 400
T R=699Q.

Example — 04 :

A 20Q) resistor is connected in series with an inductor, a capacitor and an
ammeter across a 25 —v, variable frequency supply. When the frequency is

400Hz, the current is at its Max  value of 0.5 A and the potential difference

across the capacitor is 150v. Calculate
(a) The capacitance of the capacitor.

(b) The resistance and inductance of the inductor.
Solution :
Since current is maximum, the circuit is in resonance.
xp = Fel/l1=130/0.5 =3000
(a) x =1/2mfe=300=1/2m % 400% ¢
Te=1.325x%10"%f=1.325pf"
(b) x =x =150/0.5=3000Q
2n x 400 * L =300
=L =049H
(c) Atfresonance.
Circuit resistance = 20+R.

“V/IZ=2510.5
~ R=30Q
Exp. 05

An R-1-C series circuits consists of a resistance of 1000€2, an inductance
of 100MH an a capacitance of wi uf or 10PK
(ii)  The half power points.
Solution :

1 10°
i) fo=nr o xio® = 2y = 159KHz
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i) e T=150E - — =15
2 4£; e
f=fo-"""=159x10" + | = 159.8KHz.
3 4wl 4 =10
Exp. -06

Calculate the impedance of the parallel —turned circuit as shown in fig.
14.52 at a frequency of 500 KHz and for band width of operation equal to 20
KHz. The resistance of the coil is 5Q.

Solution :

At resonance, circuit impedance is L/CR. We have been given the value
of R but that of L and C has to be found from the given the value of R but that
of L and C has to be found from the given data.

BW = £ 20 x10° =—59r£ = 39uH

2l 2=l

1_ [ 1 R 1 1 5*

e et e S
or V¢ 1 am\3ex0 ¢ @ox0 )

C=2.6x%10

Z =L/CR=39x10°/2.6 10" x5

— 3%10°0
Example: A coil of resistance 200 and inductance of 200uH is in parallel with
a variable capacitor. This combination is series with a resistor of 8000€2.The

voltage of the supply is 200V at a frequency of IDﬁHz.Calculate
1) the value of C to give resonance

11) the Q of the coil

111) the current in each branch of the circuit at resonance
Solution:

==l

X =2nfl =2*10°*#200%10 °=125602
The coil is negligible resistance in comparison to reactance.

1
ZmvLC

f=

58




CNT, Semester 37, Diploma Engineering (Electrical & Elactronics)

1

10F = —_—
Zov2ih=Cs 10

10

- y -
ii) Q=% = 21 =10° » 200 » —=62.8

1i1) dynamicjimpedance of the circuit Z=L/CR=200*10
5,-’[ 125% 10-1‘*20}=800[}GQ

total Z=80000+8000=880002

[=200/88000=2.27mA

p.d across tuned circuit=2.27% 10#80000=181.6V current

through inductive branch=-——— = 144.5m4

current through capacitor branch= wV'C
-12

6
=181.6%2n*10 *125%10 =142.7mA

POLY-PHASE CIRCUIT
Three-phase circuits consists of three windings i.e . RY.B

N KA t—>

Es
120°
207 :
B } Er
120°

Ex

Ep =E snmwt=EFE, Z0
Er = E, sin(wt —120) = E,, £ —120
Ep =Epsin(wt—240)=E, £L -240=E, £120
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3 - ¢p Circuit are divided into two types
» Star Connection
*» Delta Connection

Star Connection :—

If three similar ends connected at one point, then it is known as star connected
system.

The common point is known as neutral point and the wire taken from the
neuiral point is known as Neutral wire.
Phase Voltage :—

It is the potential difference between phase and Neutral.
Line Voltage : —

It is It is the potential difference between two phases.
Relation Between Phase Voltage and Line Voltage : —
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Line Volatagerzy = Fav— Vv
Vi =\ Vay+ Viy — 2VaxVry Cos60”

1
11 Fpp + I EI@;{VFE,_X 2

= 3¥p = 1.’31»'51
T = N3V

Since in a balanced B —phase circuit VRn= Vyn = VBN=Vph
Relation Between Line current and Phase Current :-
In case of star connection system the leads are connected in series with

each phase
Hence the line current is equal to phase current

IL=Iph
Power in 3- Phase circuit:-

P=V phl ph cos ¢ per phase
=3V phl phcos@ for 3 phase

VL
=3 o ]
73 I cast’;l'{QVL =\3ij2

P= 3V I;cosQ
Summaries in star connection:
i) The line voltages are 1207 apart from each other.
ii) Line voltages are 30 ahead of their respective phase voltage.
iii) The angle between line currents and the corresponding line voltage is 30+
iv) The current in line and phase are same.

Delta Connection :-
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If the dissimilar ends of the closed mesh then it is called a Delta

Connected system
Relation Between Line Current and Phase Current :-

—

Line Current in wire — 1 =i7—; ¥

i_.j_-_ :"J'B
Line Current in wire -2 =

— —

Line Current in wire — 3 =;B—:R

=\/g?+1y? =2 g Iy cos 60°

= )IIF}f Loy =2 phb X 12
' —
=\3L* 1 =\31
I, = 3L,
Relation Between Line Voltage & Phase Voltage : —
Vi =V
Power == /3771 1 cosep
Summaries in delta:

g2
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i)Line currents are 1207 apart from each other.

ii) Line currents are 30 behind the respective phase current.
1ii) The angle between the line currents and corresponding line voltages is 30+
Measurement of Power : —
(1) By single watt-meter method
(2) By Two-watt meter Method
(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-

(e

| \.I'..

Phasor Diagram :-
Let Vg, Vv, Vg are the r.m.s value of 3-¢ voltages and Ig,Iy.Ig are the r.m.s.
values of the currents respectively.
Current in R-phase which flows through the current coil of watt-meter
Wi=Ir
And Wh=1y

Potential difference across the voltage coil of 7} = Frg = Vg V5

—_

And Wa=Vw=Vr—-Fz
Assuming the load is inductive type watt-meter W reads.

W, = Vag In cos(30 — @) (1)
W]:_ =+ FL IL CDS(EP{] = (p} '''''
Wattmeter W> reads
. Vilcosgo #
W2 =V Ir cos(30 + @) (2)

W +W5 = Vr I cos(30 — ) +¥F Iz cos(30 + )
= Vi I [cos(30 —@) +F1 Iy cos(30 + @]
= V1 It (2 cos 30° cos@)

3
= Vi i(2% ™ cosp)
2

Wy +W, =377 11 cos@ (3)
W1 - = Vi Ir [cos(30 — @) — cos(30 + )
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=V I (2sin 30° sin @)

1
=Vp(2* 2%smng@)
" W1 —Wi = Vi Iy sin@p
=W = Vil s
W+ W B3V cosp
1 1 Y orr
1
v"_3=tﬂ.11¢] W —W’
fan 3 1 g
TN wEw
1 2
- — W-W
:‘{p:m 13/ E_I_FF

1 2
Nariation in wattmeter reading with respect to p.f:

total volt-amperes.
Solution :
Zop= A8 +6 =100
Vo =400/ 43=23/v
Ips =Ven! Zpw =231/10=23.14
i) IL =Zpn=23.1A
ii)  P.f.=cosB=Rgh/zph=8/10 = 0.8 (lag)

1i1) PowerP = ~3V; I'; cosf
=43 %400%23.1x08
= 12. 800 watt.
iv)  Total volt ampere s=V3 VL IL

=+/3 x 400% 23.1
= 16. 000 VA.

P W reading W3 reading
=0.cos =1 +ve equal +ve equal
=60,cos =0.5 0 +ve
=90,cos =0 -ve, equal +ve equal

Exp.: 01

A balanced star — connected load of (8+56). Per phase is connected to a
balanced 3-phase 100-v supply. Find the cone current power factor, power and
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Exp. 02

Phase voltage and current of a star-connected inductive load is 150V and
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire
and power is measured using two watt meters, find the readings of watt meters.
Solution :

Vph= 150V

VL=V3x150

Lai=T =254

Total power =3 VLI cos @ =3 x 150x V3 x 25 x 0.707 = 7954
watt. Wy + W = 7954.00, cos ¢=0.707
(=rcos " (0.707)=45°, tan 45° =

1 Now for a lagging power factor,
tan ¢ = {3(W — W ) (W + z)
"‘L‘: 3 (Hrl _H?:}
W —_—
7654
(W —TR ) = 4592w
From (i) and (ii) above, we get

Wi =6273w W =1681w
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TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from ane condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.The time taken to change from an initial steady state to the final steady state is known
as the transient period.This response is known as transient response or transients. The
response of the network after it attains a final steady value is independent of time and is
called the steady-state response.The complete response of the network is determined with
the help of a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltage or current when it is changed from one state to another is called the transient state.
The time taken for the circuit to change from one steady state to another steady state is
talled the transient time. The application of KVL and KCL to circuits containing energy
storage elements results in differential, rather than algebraic equations. when we consider a
circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and is referred to as the transient response. When we consider a source acting
on a circuit, the response depends on the nature of the source or sources.This response is
called forced response. In other words,the complete response of a circuit consists of two
parts; the forced respanse and the transient response. When we consider a differential
equation, the complete solution consists of two parts: the complementary function and the
particular solution. The complementary function dies out after short interval, and is referred
to as the transient response or source free response. The particular solution is the steady
state response, or the forced response. The first step in finding the complete solution of a
circuit is to form a differential equation for the circuit. By abtaining the differential
equation, several methods can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in figure. The inductor
in the circuit is initially uncharged and is in series with the resistor. When the switch S is
tlosed ,we can find the complete solution for the current. Application of kirchoff's valtage
law to the circuit results in the following differential equation.

8 R
A v

Vel | D g:.
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V=Ri+L2 T

i R
DHE L e s R R e R

In the above equation , the current | is the solution to be found and V is the applied constant
voltage. The voltage V is applied to the circuit only when the switch 5 is closed. The above
equation is a linear differential equation of first order.comparing it with a non-homogenious

differential eguation

whose solution is

O, ol . ol

14

Where ¢ is an arbitrary constant. In a similar way , we can write the current equation as

-8 B v Bk
i e W + 8 \L | —&'L
1=C -f ji; dt
R
. =
Hence,i =cC € B e R s R 15

M

To determine the value of ¢ in equation ¢, we use the initial conditions In the circuit shown in
Fig.1.1, the switch s is closed at t=0.at t=0-i.e. just before closing the switch s, the current in the
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after

the switch is closed,the current remains zero.
Thusatt=0,i=0
substituting the above condition in equation ¢, we have

O=c+ _

el

Substituting the value of ¢ in equation ¢, we get

1:'_-'_ e L
N e
- il
i=- (1- %)
Ke f.—""“-'.'i

i={., (1- €L )(where -~ &’

r=Timsconstant ==

i=1_{1-£ 7} (where B s s s s e L

o7
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P11

‘0 1 2 3 4 5 8 1C
Figure 1.2

o o i
Equation d consists of two parts, the steady state part o= V/R) and the transientpart * €& |

When switch S is closed , the response reaches a steady state value after a time interval as
shown in figure 1.2,

Here the transition period is defined as the time taken for the current to reach its final
or stedy state value from its initial value.In the transient part of the solution, the
guantity L/R is important in describing the curve since L/R is the time period required

for the current to reach its initial value of zero to the final value [/ . =V/R. The time
=fiz
constant of a function /. @71 isthe time atwhich the exponent of e is unity, where e

is the base of the natural logarithms. The term L/R is called the time constant and is
denoted by t.

S0, T= — sec

an | b=

Hence, the transient part of the solution is

A T

T

At one Time constant, the transient term reaches 36.8 percent of its initial value.

i = B =_£ =L —_ ¥
i(T) el 2° 0.368 Z
Similarly,
i(21) =ga™2 =-0.135-
i(31) =£e~ =-0.0498

i(51) = -;-'ri =-0.0067 -

After 5 TC the transient part reaches more than 99 percent of its final value,

EE]
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In figure A we can find out the voltages and powers across each element by using the

current. Voltage across the resistor is

¥z =Ri=R¥- (L )

-Fs
Hence, Vz=V[1- E_Lt ]

Similarly, the voltage across the inductance is

-

i H't R

=L k@l -y el

E

L

.'.-':L

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

= —,ﬂ:’ -
Bi=rai=V( T )(1— 6T )x’

=—[1- Ee"-'::gi }+e:!'u

B

Power in the inductor is

@iﬁrxi (i= Ez%fl

Pl i=V

R o o

The responses are shown in figure 1.4 .
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Problem: 1.1

. a0
A AN

H
(L1 ey

BOV

Figure 1.5

A series R-L circuit with R.= 300t and L = 15 H has a constant voltage V = 50 V applied at t=0 as

shown in Fig. 1.5 . determine the currenti, the voltage across resistor and across inductor.
Solution
By applving Kirchoff's voltage Law, we get

15 ' +30i =60

== +2i=4

The general solution for a linear differential equation is
i=ce #1+ 7] Re gt
where P=2 K=4
putting the values

= o7 | e

i=EF ot v

=S LR

100
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At t=0, the switch s i5 closed.

Since the inductor never allows sudden change in currents. At t=C0:— the current in the circuit
is zero, Therefore att= T~ ,i=0

=2 0=c+2

=:Cc=-2

Substituting the value of ¢ in the current equation, we have

i=2(1- = )A

voltage across resistor [ ) =iR=2(1- ¢ 2+ Jx30=60{1-=2"2-)v

oy

voltage across inductor { + /) = L=2 =15 E2{1— e :-)=30 », 28"y BOe™

DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the
circuit is initially uncharged and is in series with the resistor.When the switch 5 is closed at t=0, we
can find the complete solution for the current.Application of kirchoff's voltage law to the circuit
results in the following differential equation.

_q%; \ 4 1
T

Figure 1.6

=

Ve R SRilE s snnenany

By differentiating the above equation, we get

a1
0 Ra’r = i 1.8
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Equation ¢ is a linear differential equation with only the complementary function. The particular
solution for the above equation is zero. The solution for this type of differential equation 1s

Fop
. - =
1=C & BE e 1.10

To determine the value of ¢ in equation c, we use the initial conditions .In the circuit shown in
Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it
will act as a short circuit at t=o+ just after the switch is closed.

Sothe current in the circuit at t = 0+is __

Thus att=0, the currenti= _

Substituting the above condition in equation ¢, we have

_:c

i

Substituting the value of ¢ in equation ¢, we get

T 5 111

i

v - '
"ﬁ' . .

¢ 1 2 3 45 @ J¢

Figure 1.7

When switch S is closed , the response decays as shown in figurre.
The term RC is called the time constant and is denoted by t.

S0, t=RC sec
After 5 TC the curve reaches 99 percent of its final value.

In figure A we can find out the voltage across each element by using the current equation.

Voltage across the resistoris
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Hence, s =V #3C

Similarly, voltage across the capacitoris

Lo
_:dlﬁi‘

L
#

1 eV £
= | =ghC
=¢JFE' dr
B 2
— X At
:—(E?l'.’ BCe i]-l-[:

= V% 4 ¢

At t=0,voltage across capacitoriszero

So0,c=V

And
ooyil— e

The responses are shownin Figure1.8.

bc

R
2 3 4 5 &

Figure 1.8

Power in the resistoris

=

V afC 1Y gt
3

 ET

-

aa®
Tre

E
-

)

Power in the capacitor is
S v
T4y i
T T B Fg >

i
)

o

F-
ru-
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_7 (R 6T
The responses are shownin figure 1.9,

P
Ve

2w

Figure 1.9

Problem: 1.2

A series R-C circuit with R =100 and C=0.1 F has a constant voltage V=20 V applied at t=0as
shown in Fig. determine the current i, the voltage across resistor and across capacitor.

LR T

SV

=0.1F

Figure 1.10
Solution :
By applying Kirchoff's voltage Law, we get
10i + é.‘iiﬂ’?:zﬂ
Differentiatingwr.t. tweget
102+ 220

= +i=0

The solution for above equation is
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i=ce
Att=0, the switch s is closed.

Since the capacitor neverallows sudden change in voltages, Att={,~ the currentin the circuit
isi=V/R=20/10=2 A

. Thereforeatt=0,i=2 A

= -, the current equationis i=2 ¢

voltage across resistor [ .L'IJE] =iR=2 &' 1x10=20¢& v

=t
voltage across capacitor (-} =V~ 502 20(1- e )V

DC RESPONSE OF AN R -C CIRCUIT

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The
capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When
the switch 5 is closed at t=0, we can find the complete solution for the current.Application of
kirchoff's voltage law to the circuit results in the following differential equation.

A ;
o AN\

i | .

Figure 1.11
VmEel S e el relo s 112

By differentiating the above equation, we get

O=R-E LM L= 113
ab {

Or

QAT 22 41200 eeessesssses s ssssss s s 1.14
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The above equation c is a second order linear differential equation with only the complementary

function. The particular solution for the above equation is zero. The characteristics equation for this

type of differential equation is

S e T 1 .

F
=

The roots of equation 1.15 are

5115’.'.:__-:_ ivﬁsl A

P
L

VL
By assuming ¥, ,=-z.and F.-= ¥ .:{) it

Dy=Ky~ K- and P2 =8 K-

Here F .- may be positive,negative or zaro .
X" 1

Then , the roots are Real and Unequal and give an over damped Response as shownin
figure 1.12.

The solution for the above equationis:i= C _; E-':HTR:}'M Lo P
A
o t
Figure 1.12
: , B S ]
Casell: K2 (s Negative f_—U] < =

Then, the roots are Complex Conjugate, and give an under-damped Response as shownin
figure 1.13.
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Figure 1.13

The solution for the above equationis:i= S coslt +C dn Ky

Caselll: g ro zorg f%}. - _1

Then , the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

if

Figure 1.14
e (0 + Cot)

The solution for the above equationis:i=
Problem: 1.3

A series R-L-C circuit with R= 2001, L = 0.05H and C = 20 pyF has a constant voltage V=100V
applied at =0 as shown in Fig. determine the transient currenti.

. i R
K AA,
208 ' LdoosH

100V 5

C== 20 uF
3

Solution

By applying Kirchoff's voltage Law, we get

100=30i +0.055% & —>— [ 141
de JAx1Gm®

Differentiatingw.r.t. tweget

- g - if.:. —-1;-—
QOSe=i/dr=400 2r+ 2onio-%i=0
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- dzig‘-fi-':'mm:-. E ]_ﬂ"i:ﬂ

=2 (0% : 4000+ 10fi=0

The roots of equation are

i

— - ey =]
L i,v(;) 10

=-200 :t\. t?ﬂﬂj' e J-ﬂE

o= -200+j979.5

4z2= 70049798

j= 85[0y cosK; £+ CroosKa1]

j= €729%[G €0a9TIE L + o Sin979.8] 5

Att=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t= Ly~ the current in the circuit
is zero. Therefore att=0C.,— ,i=0

2i=0=(1) [31 tos 040Gy ﬂnﬂ]

=20 _pandi= G":'E“‘:[{;-n En9798r] o
Differentiatingw.r.t. tweget

di = .
ar = C, [0 0798 cos979.8 £ + ™= % (~200)sin 979.8¢ ]

Att=0, the voltage across the inductoris 100V

dif s
=% L— —_
dt=100 or dt= 2000

'

Att=0, .:_;-: 2000= C2979.8 cosl

pivned
= .0 .= FEA=2.04

The current equation is
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j= ORI 048ln 979.80) A4

ANALYSIS OF CIRCUITS USING LAPLACE
TRANSFORM TECHNIQUE

The Laplace transform is a powerful Analytical Technique that is widely used to study the
behavior of Linear Lumped parameter circuits. Laplace Transform converts a time domain
function f{t) to a frequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F[s) back to a time domain function {{t].

crn e e e dcsuansanamoni 2 LT1

i beamaRs ooouseesr s f . b

DC RESPONSE OF AN R-1 CIRCUIT (LT Method)

Let us determine the solution i of the first order differential equation given by egquation A
which is for the DC response of a R-L Circuit under the zero initial condition i.e. current is zero,
i=0 at t=C:~and hence i=0 at t= 9In the circuit in figure A by the property of Inductance not
allowing the current to change as switch is closed at t=0.

XS by
0%
hsamed +
v - i f ' g L
Figure LT 1.1
it
R 1T SO LT11

Taking the Laplace Transform of bothe sides we get,

VO RSN ER (S ((1) ) (I—— SO |y &

=}§ “RI(s)+L[s1(s)] (1(0) =0 : zero initial current)

=> = =1(5)[R+L ]

=HIE) s ISR Fy o 5
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Taking the Laplace Inverse Transform of both sides we gef,

== 1 ST X, T |
{1 = 1) = g
b4 )
ift) = siia=al” [ Dividing the numerator and denominator by L)

putting ** = H/lye get

cpp Vb o gagp¥ 1 1 1
i) = & ; S =4 1{2[5- {-'*-*J}x}

-k E_.._i b 14
i)y = £ 11;‘[5 (z+m 15 ° &+ [ again putting back the value of )

iM)= eV B 2 _g=¥([1- "ﬁ:}: {1- "E-‘j (where _
s -8 -:as:_-zva} T ¢TIk el =2
= I [1_=";';] (where r=Timeconstonr= *_ i IR, . SR, Yo, Wk WO i ) -

[t can be observed that sclution for i{t) as obtained by Laplace Transform technique is same as
that obtained by standard differential method.

DC RESPONSE OF AN R-C CIRCINT(L.T.Method)

Similarly,

Let us determine the solution i of the first order differential equation given by equation A which is
for the DC response of a R-C Circuit under the zero initial condition Le. voltage across capacitor is
zero, 1~ =0att=L,_and hence 1" =0 att= L, in the circuit in figure A by the property

of capacitance not allowing the voltage across it to change as switch is closed at t=0.

v 1
" C
Figure LT1.2

o

H?‘l L.eid
Taking the Laplace Transform of both sides we gef,

~ =RI(s) + [ ili‘ #1007 LT 16

-:-E RI(s) + '-fh ] (1{0) =0 : zero initial charge )

.-.::-;-i = I(s)[R +— ]=1[51?5:‘5£ ]
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- bs Ve
=Z:(8)=2 | 'fﬂﬁa‘-"'[']: (RGeS

Taking the Laplace Inverse Transform of both sides we

) = L2y
get, =0 I'_ii:[[S]}: ,5}'} =1L {I:Rfﬁﬁ}

ift) = L'L{'-[-_ﬂ%-l-] ( Dividing the numerator and denominator by RC)
RC

putting - :_L we get
g i L
i) = g {UM}} B

=

i(t) = . #R%( putting back the value of */

it) =, ¢% (where [, = &) ... ... .LT18
F.3

ift)= 12, .57'] (where r=Timeconstant= RC)

It can be observed that sclution for i[t) as obtained by Laplace Transform technique in g is
same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-1-C CIRCUIT [ L.T. Method)

10, =€

Figure LT 1.3
Similarly,

Let us determine the solution i of the first order differential equation given by equation A which is
for the DC response of a R-L-C Circuit under the zero initial condition Le. the switch s is closed at
t=0.at t=0-1ie. just before closing the switch s, the current in the inductor is zero. Since the inductor
does not allow sudden changes in currents, at t=o+ just after the switch is closed.the current remains
zero. also the voltage across capacitor is zero i.e. 17 =0 att=Cy— and hence 17 =0

at t= 07 in the circuit in figure by the property of capacitance not allowing the voltage across it
| to suddenly change as switch is closed at t=0.
@i

Eilfcat

V=Ri+L dv 1 s ED

Taking the Laplace Transform of both sides we get,
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2 =RI(S) ++L [s1() 101+ EZ+1(0)] o LT 110

'}E =RI(s) + L'[“':";]"'% E'!';!" 1 010} = Q:zero initial current & 1(0) =0 : zero initial
charge )

=}; :I{S]IR'I'[E'F{—E]:I(S][%]
= . = ] Ve
==1(s) =g x:ﬁ-&ﬂi-ﬂwnn - BP iy g i 3

Taking the Laplace Inverse Transform of both sides we get,

- > VE
=> [H{I(s)}= el = L 1£-;£-E:?+£-::+L"}

[
iy=& ¥ W { Dividing the numerator and denominator by LC ]

i) = ¥
L=t |
{ E!' "‘I.!!‘ '.'Jﬂ1

5 . B & S
Ltts == nad o =il— weget
putting T i il NI g

1

T S (I

ift) = (sS4 dumesatl’
= ImA T R =g F = 2
where, 5, ,5; = # — NN —f = 7
- = T — -
Wwherg, X'=— &4 = anfl =Y &=
£ i

By partial Fraction expansion, of [[s],

is) =8 el
=l o 1

)
= iy

e

I ¥
a

T =) (5=Fy)

E i 1

=) == e E——
(= (Be=3p) (2 (-mgr

Taking the Inverse Laplace Transform
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equation.

Mow dependinguponthevaluesof ., and_ . _ . wehavethree cazes of the responze.

CASE I : When the roots are Real and Unequal, it gives an over-damped response.

ar ; 1m thos caoe, thie solonion & given iy

)= (i o A W) i s BT AR
or i()=_ _ &=l A eft .

CASEII ; When the roots are Real and Equal, it gives an Critically-damped response.

-
U - N ; In this case, the solutionis given by

i) k . - . .
- = Ifc- or o < ;Inthis case, the solution is given by
2k )

i(f) =4, #9F @9  fort » 0

e T — &
WhEI‘E,E: - =.."_u =y X -y

Let Vor—a® ={=Iv@F -a* =j we where j={=1 andwy Vo© —%*
Hence, ift) =e™%2(A; 79 14, g=lvEF

i(t) =~ {{.*11 +4) Eu] + 1Ay - A E.M:-:—:H‘”

i) =~ [(4 +A:)coswat +] (4 —A)sinwat ]

i(t)=e~"(Bycosmgt +Byfnwat) ... LT 114

JIIIRRFRINEY, FERIIINIRRRRRE) .l'.l'.l.l'l.l.l'IIHll"J'HMlmmmuﬂlJJIf"I.l'.'.l.I'I.I.H.I'NJJ'"JI!H"""J'HHTII
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TWO PORT NETWORKS

Generally, any network may be represented schematically by a rectangular box. & network may be
used for representing either Source or Load , or for a variety of purposes. A pair of terminals at
which a signal may enter or leave a network is called a port. A port is defined as any pair of terminals
into which energy is withdrawn ,or where the network variables may be measured .One such
network having only one pair of terminals (1-1")is shown figure 1.1,

+-l = | ea bl <— 15
Y,

I P bt

Figure 1.1

A two-port network is simply a network a network inside a black box, and the network has only two
pairs of accessible terminals; usually one one pairs represents the input and the other represents the
output. Such a building block is very commeon in electronic systems, communication system,
transmission and distribution system. fig 1.1 shows a two-port network,or two terminal pair
network,in which the four terminals have been paired into ports 1-1" and 2-2°.The terminals 1-1'
together constitute a port. Similarly, the terminals 2-2" constitute another port. Two ports
containing no sources in their branches are called passive ports ; among them are power
transmission lines and transformers. Two ports containing source in their branches are called active
ports. A voltage and current assigned to each of the two ports. The voltage and current at the input
terminals are 'iand / ; whereas 1> and /- are entering intg the network are '3, 1~and 5, /-
Two of these are dependent variable, the other two are indepent variable. The number of possible
combinations generated by four variable, taken two at time, is six. Thus, there are six possible sets of
equations describing a two-port network.

OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network is shown below in figure 1.2.

The z parameters of a two-port network for the positive direction of voltages and currents may be
defined by expressing the port voltages |- and ! interms of the currents [ and_! - Here, |- and.
I are two dependent variables and /s and ! - are two independent variables.
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"rl Iz
+l:—*ﬂ b-—Liz
Input |, p, Output
-—.—1' : —ea” b =+’
Figure 1.2

The voltage at port 1-1" is the response produced by the two currents Liand [ -

thus
VLS ORI T BUL eeeesssnssesessssssssmssnnesnne. 11

L . /7

ZiZiz0Z2 end Zi: are the network functions, and are called impedanca(Z) parameters, and
are defined by eguations 1.1 and 1.2,

These parameters also can be represented by Matrices .

We may write the matrix equation [V] = [Z][l]
51

where V is the column matrix=[ I‘" ]

Z is a square matrix = [ 11 '1']
Iy
and we may write 'l in the column matrix== [ I 1
I’El [ z‘.l.;]
Thus, [ ¥2 1= 511 831

The individual Z parameters for a given network can be defined by setting each of the port
currents equal to zero. suppose port 2-2° is left open circuited, then / - =0.

i
This 214 = k! =10

where
Taq 1sthe driving point impedance at port 1 = 1'withport 2 -
2'open cireuited. It iscalled the open circult Input impedance

similarly,

el

Zn- &l k=0

where
.‘an isthe ransfer Impedanceatportl — 1'withport2 -
2'open clrculted, It iscalled the open clrcult forward transfer impedance
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Suppose port 1-1" is left open circuited, then 7, =0.

=0
Thus, diz - j .

where
2,2 izthe wansler Impsdanceatport 2— 2" withport L -
1'open circulted. [t iz called the open clrouit reverss transfer Impedance

similarly,
Ve -
Zoa_ ﬂ A=y
where

Z;; iz the open circultdriving point Impedancs at port2 — 2'with port 1 —
1'open circuited. It s also called the open clreult output Impedance

.The equivalent circuit of the two-port networks governed by the equations 1.1 and 1.2 ,i.e. open
circuit impedance parameters as shown below in fig 1.3,

—> - b

1 - 2‘1

T Z11 2 T

Vi Va

I Zizhy AN Zwh
1 z

Eirw 10 23
Figure 1.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

3 oy
=40 = L =0
ame - -

2'1 = T .

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parameters are specified only when the current in one of the ports is zero. This corresponds toone
of the ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem 1.1
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Find the Z parameters for the circuit shown in Figure 1.4

i
S

oy
N
L
[ Boa e
fob e gomy =X w
ok a L 4 o
LA OF LR
. '
L g ow kr " e
s ony 3 “ k> g,
et oWl
' = &
Morw L g X ol L
i b iy . = . N e
R : SR -y - ny
HiY -y - N : mE W s e ¥ od
- > w e B _1'1; ,, ¥ -
40 % ¥ ailog . BN O .
L sl B oeoa o it o L
v A E ekl -,
ek T T Nl = I
o EER R EA- - T AL kia " komg
£i% o . ot e SR Rt L
- » H 4 p -
RS -y
R i A Dok g e b Dl
e Y i . T > E—a
[ TR M=) Xirwm g _" L5 T
Pl s 3 ¥ o R e . e P
B L -
ety SR et g Ll o T R
A -t ey ‘e
& P Rl & 1 L 5 Mg
B : o —
R b S R Rl R .
Lt SR & o - e

Figure 1.4
Solution The circuit in the problem is a T network. From Egs 16.1 and 16.2 we have

and V: = I'Eili- '1"1;2[;

Vi=Iul +Iz0;
When port b-b’ is open circuited,
T

I,
Where ¥ =Lz, +2,)

s 2qq = [EE-F-:_&}

Za1 -
Where Bl i; hEy=Zy

When port a-3" is open circuited, !-:=0

Va

Zz_ % =0

-

where ¥z = Ll&x+ L)
Zyy=(Z,+2.)

&;:%II:U

where VW =kZsand Ziz=4

r -
It can be observed that =77 = =31, 55 the network is a bilateral network which satisfies the

principle of reciprocity.

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS
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— h—_
1 + +
Linsar
Vi network Ve
o= : — r
Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16,5The ¥
parameters of a two- port for the positive directions of voltages and currents may be defined by
expressing the port currents /.i and [ -in terms of the voltages 15 and 1" Here 15, 1™ are
dependent variables and 15 and 7. are independent variables.i- : may be considered to be the

superposition of two components, pne caused by 1 and the other by ™.

Thus,

=TaR YW s 13

Shmilerly R s s R S R T

}:Il z fio P:-"l and II;I:a.r»e the network network functions and are also called the admittance

(¥} parameters, They are defined by Eqs 16.3 and 16.4, These parameters can be represented by
matricas as follows

=itV
) W Tir Yia . > ¥
where I-[! : & Yay 11.-3:] andV = v,
Thus,
I. Yu Y W

foH Ve e Vo
The individual ¥ parameters for a given network can be defined by setting each port voltage to
zero. ifwe let © '~ be zero by short circuiting port 2-2" then

L

F!..'L = "F; T

-=0
Y41 is the driving point admittance at port 1-1, with port 2-2’ short circuited.it is also called
the short circuit input admittance.

I

o = ¥elo o o

Tag is the transfer admittance at port 1-1°, with port 2-2° short circuited. [t is also called the short
circuited forward transfer admittance. If we let \ 5 be zero by short dircuiting port 1-1',then
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.‘i.l
‘Fj.:-: :':' V=0

12 is the transfer admittance at port 2-2', with port 1-1' short circuited. It is also called the short
circuited reverse transfer admittance.

|
Yoo - wly =0

Y22 is the short circuit driving point admittance at port 2-2', with port 1-1" short circuited. It is also
called the short circuited cutput admittance The equivalent circuit of the network governed by
equation 1.3 & 1.4 is shown in figure 1.6

1 T '[ 2
: [ vavs ol "

;R . z

Figure 1.6

It the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

i‘|i~'1={l = é‘li’:‘ﬂ

or

Ya-Yu
it is observed that all the parameters have the dimensions of admittance. Moreover, individual
parameters are specified only when the voltage in one of the ports is zero. This corresponds to one

of the ports being short circuited from which the ¥ parameters also derive the name short circuit
admittance parameters,

Froblem 1.2 Find the Y-parameters for the network shown in Fig.1.7

ET*—*:-.W AN o g3 b

10 20 }

Vi §2£1 §49 Va
; '

& T _ b’
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Figl.7
Solution:
1
Y‘ll = 1"'. - :ﬂ
When b-E 1. is short circuited, '~ =0 and the network looks as shown in Fig. 1.8(a)
a AAYAY AN , b
T “ho1g 2
24}
Vi ——= Zeg 2Q V2=0
a b
Fig.1.8(3)
eli= i"E‘q
Zeam 2.1
SD, "--_'.4 = Il 2
’ T ]
.‘Iii- = ﬁv :ﬂ: ke
i
- -
A= Wl v .2n
When b- ='isshort circuited, - & 13 X i =

and ¥ay :;‘-"- va={==
V-=0 and the network looks as shown in Fig. 1.8(b)

similarly, when port a- 45 short circuited,
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__-.11 - .£2
a AN AA . b
1Q 20 T
Vi=0 20 4Q Vo ~—za
af l b" 4

Iz
¥22 - Vol ,p

Tt == Izziﬁlwhere Zag is the eguivalent impedance as viewed from b- &, ..

£

Yiz - ¥

¥ooa=0

Wil
o

with a-=" is short circuited , -1z

Since, 1- =5 Eai

= O R
S i

I

50, fia == =
Vs 4

-

The describing equations in terms of tye admittance parameters are

Transmission (ABCD) parameters

121




CNT, Semester 3%, Diploma Engineering (Electrical & Electronics)

Figure 1.5

Transmission parameters or ABCD parameters are widely used in transmission line theory and
cascaded networks. In describing the transmission parameters, the input variables 1% and - Lat port
1-1’, usually called the sending end are expressed in terms of the output variables 1% and . - at port
2-2', called, the receiving end.The transmission parameters provide a direct relationship between
input and output.Transmission patameters are also called general circuit parameters, or chain
nparameters. They are defined by

i 2 S, i :

The negative sign is used with _ - , and not for the parameter B and D. Both the port currents | . and-
L ~are directed to the right, i.e. with a negative sign in equation a and b the currents at port 2-2'
which leaves the port is designated as positive.The parameters A,B,C and d are called Transmission
parameters. In the matrix form, equation a and b are expressed as ,
h 4 B ¥
[hEtC P -

it o
Thematrixk *C D is called Transmission Matrix.
For a given network, these parameters can be determined as follows. With port 2-2° open circuited
i.e. | =0;applying a voltage | -atthe port 1-1', using equ a, we have

A=S p=Qand CH}=0

hence, iz££§j.=l] 2 1+ =0
a Wl i

T t?

i

1/A is called the open circuit voltage gain a dimension less parameter. And - '—'i"i ;=0 25|
. 1

=0 is calied open circuit transfer impedance. with port 2-2' short circuited, i.e. V. =0, applying
voltage V| at port 1-1" from equn . b we have
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-— ’FE va=0 IF.l:- =0iscalled short circuit transfer admittance
2
and,
T 3 v==0 = vs=0 iscalled short circuit current gain a dimension less parameter.
L
Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

e T L

: 1
== + y +
a - =N AN b
E VT. / 5 ﬂ Vz
Wl - i
Fig. 1.10
Solution : From Egquations 1.5 and 1.6, we have
I; - ﬂ?_; = D]_
when b-b' is open circuited ie. | -=0, we have
=
A= i-om
=
_ - - @
where VW,=81.and %'..=5,1-: and hence, &= 2 g

I
=
=

f?“ﬂ_f

=
when b-b’ is short circuited i.e. 1~ =0, we have

v l_;.I
E,:-T:'i 3=V andp=- &l - =1

B iy
inthe circuit,-! - =+"1" andso,B= £
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similarly, | .= V7 .and-1 +==V".

5 = =

Py

and hence D = :

Hybrid parameters

Hybrid parameters or h-parameters find extensive use in transistor circuits. They are well suited to
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describe a two-port network, when the voltage of one port and the current of other port are taken
as the independent variables. Consider the network in figure 1.11.

If the voltage at port 1-1" and current at port 2-2" are taken as dependent variables,we can
expressthemintermsof Liand &~ .

L CERLE CL S &

by =hogh TRaaVo | eeeessesiisseennn LB

The coefficient in the above terms are called hybrid parameters.In matrix notation

o By R

] k
(12 B B’ ¥y

)7 I
+ == ] b.—Ji—iz
mﬂy‘ V2 port

Vet ea’ bot— 2’

1!‘

Figure 1.11

from eguation a and b the individual h parameters may be defined by letting 5_1 =0and Y-.=0.

when %7 - =0,the port 2-2’ is short circuited.

o

Then Mg = del =0 = short circuit input impedance.

2y = :1| - =0 = short circuit forward current gain

Similarly, by letting port 1-1’ open, & =@

i
Pz = Val Ly =0= open circuit reverse voltage gain
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2! I - =0 =open circuited output admittance

Since h-parameters represent dimensionally an impedance, an admittance,a voltage gainand a

current gain, they are called hybrid parametears .An eguivalent circuit of a two-port network in terms
of hybrid parameters is shown below.

—= Iy - |5

t o hay 11. T
Vi | <D . | gz \1', |

Figure 1.12

Problem 1.4

Find the h-parameters of the netwark shown in Fig 1.13.

L
a wifpipam, 'z "

T -“1 1Q 29 T
|
2 g 20 § 4Q © Vp

af
Fig.1.13
Solution :

From equations 1.7 and 1.8 , we have

-

% A ] :
By = Bl ooe = ¥pa = R 4 =0 bz - ¥ "15-5‘-;1]2&: ¥abp =0

If port b-£1 is short circuited, ! .. =0 and the network looks as shown in Fig. 1.14(a)
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a —AAA- AN =e—1h
T fy 1Q 20 £
e Wy § 2Q ga Q V2=0
ZQq
a b
Fig.1.14{a)

1_11
h:l: Ll - =0 Pl=fi-zﬂ

2‘-“]5 the equivalent impedance as viewed from port a- & s -is 200
so, Vi =RY
by =_ =0

by :rf - =0when =0; - =1, %and hence Bpq =

TRE™

If port a-a .is open circuited, 1,=0and the network looks as shown n Fig. 1.14(b) then

'rj"
= - AVATAY ; 1
—* I = = 2
1 10 20
f l
Vs 20 40 Va
Fig.1.14(h)

hi:.:*ﬁ —eand Via= L2 L=
Vs 18 Lo
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INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3 & 1.4 , it is easy to derive the relation between the open circuit
impedance parameters and the short circult admittance parameters by means of two matrix
equations of the respective parameters. By solving equation a and b for Liand | -, we get
e B e L L 13
1 &3 - ;and - [-ﬁil _"’_1]
[1,'1 zn-] dn V'

where _ Iz the determinant of 7 matrix

= T——————————_ | ) AN

cumparing_ équa‘tin#s 1.9 and 1.10 with equations 1.3 and 1.4 we have

In a similar manner, the z parameters may be expressed in terms of the admittance parameters by
solving equations 1.3 and 1.4 for Y sand V -

Iy Yz o e .
[I; Youd .  sand - [T:L 1:]_ o
where s the determinant of ¥ matrix
= 3 -
AL ek +
iy, Bar

comparing equations 1.11 and 1.12 with equations 1.1 and 1.2 we have
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Iy = . e

oo

E!:

&1 & . Dga_ ¥

General Circuit Parameters or ABCD Parameters in Terms of Z parameters

and Y Parameters

We know that

'I' = Ar; T E{T : : 11 = Y;i"'& + YEE?E
L=CVa=Dh ; ; [y = ¥z4 Vs + Y2272

= !:1 = — = = F = — ‘rrr . v . 'I;, L =
A_E-if__u, C'E| . B= T:-]..,=u,u—f =0
Substituting the condition _ =0inequations 1.1 and 1.2 we get

zE T
=
A= .".I. IT: o u = =L

Substituting the condition =0 in equations 1.4 we get,

Substituting the condition [- =0 in equation 1.3 and 1.4 and solving for @Eves =l lfi

Where A is the determinant of the admittance matrix

:—f‘r;-ﬂ =:". =C

Substituting the condition % =0in equations 1.4, we get

"—31’;=ﬂ =— =B

ol
-, ==
Substituting the condition V- =0 in equation 1.1 and 1.2 and solving for-! - gives t

Where Z .. isthe determinant of the impedance matrix
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-h[ =
. ':ﬂ ‘IE = ﬂ = 2w = B
Substituting the condition %~ - =0 in equation 1.2 we get,

L}Hv;=ﬂ ::E:D

Substituting the condition v, * =0 ineguations 1.3 and 1.4

we get

-TH - % b

T and 7: representation

A two-port network with any number of elements may be converted into a two-port three-
element network. Thus, a two-port network may be represented by an equivalent T-

network, i.e. three impedances are connected together in the form of a T as shown in figure
1.15.

1f —

Figure 1.15

It is possible to express the elerments of the T-network in term of Z parameters,or
ABCD parameters as explained below.

Z parameters of the network

Zu %lf- =0 =Z;+Z,

In '}"l l, =0 =Z,
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From the above relations, it is clear that

£, =&y -2y

&= 2:: -2g;
L. =2y3-25

ABCD paramaeters of the network

When 2- = is short circuited

% L,
Zplorlgiy+L,)

B=(Z, +Z,) +Ak

Is
C:—}i-‘[.L:D =
Vel =

I:'lln-l

When 2- * is short circuited

—L =1, 8
I3,
1:;I -::,
D= -

From the above relations we can obtain

n
(o1

Problem :1.6
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The Z parameters of a Two-port network are dyy = ”"'gﬂ, Zyo = 18028y = a5,
Find the equivalent T network and ABCD Parameters.

Solution :

The equivalent T network is shown in Figure 1.16

where 4.= 213 _ 43 =50

The ABCD parameters of the network are

=z g2

-
A= Br+1=2;B=( 22 T Lr e & =250

——

C= * =0.02:D=1 %r=3

In a similar way a two-port network may be represented by an equivalent - - network,
i.e. three impedances or admittances are connected together in the form of — . as shown
in Fig 1.17.

Zs z,
Ze
+
41 +
R F - Y, 5 =
Vi Yy Ys Y2
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Fig. 1.16 Fig.1.17

It is possible to express the elements of the ™. -network in terms of Y parameters or

ABCD parameters as explained below.

Y-parameters of the network

Yis ==¥wv- =0 =7, %
vl =

% =3 0 =x

2 =g Vs =X

%oz v =0 ¥, ¥
L

i k "

2 =of vy =0=¥
12 Ve 1

Writing ABCD parameters in terms of ¥ parameters yields the following results.

=¥z, Yadts

A Yme = Y
—
B= Y=
L nY

C= T =V, +42+ 0
=P, L

D= i = ?ﬁ_-t

from the above results, we obtain

D=1

et
~
n
L1
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9.1 CLASSIFICATION OF FILTERS

& filter is a reactive network that freely passes the desired band of frequencies while almost
totally suppressing all other bands. A filter is constructed from purely reactive elements, for

otherwise the attenuation would never becomes zero | n the pass band of the filter network. Filters
differ from simple resonant circuit in providing a substantially constant transmission over
the band which they accept; this band may lie between any limits depending on the design.
Ideally, filters should produce no attenuation in the desired band, called the transmission
band or pass band, and should provide total or infinite attenuation at all other frequencies,
called attenuation band or stop band. The frequency which separates the transmission
band and the attenuation band is defined as the cut-off frequency of the wave filters, and
is designated by fc

Filter networks are widely used in communication systems to separate various voice
channels in carrier frequency telephone circuits. Filters also find applications in instrumentation,
telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of
frequencies. A filter may, in principle, have any number of pass bands separated by attenuation
bands.However, they are classified into four common types, viz.low pass, high pass, band pass and
band elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.MNeper is defined as the
natural logarithm of the ratio of input voltage (or current) to the output voltage {or current],

provide that the network is properly terminated in its characteristic impedance Z g .

/4 I

Ex e - e g ———— - 4@

Vi W %

I

Fig .9.1 (a)

From fig. 9.1 (a) the number of nepers, N=log e [V1/V2] or loge [11/12]. A neper can also be
expressed in terms of input power,P1 and the output power Pz as N=1/2 log. P1/P;. A decibel is

defined as ten times the common logarithms of the ratio of the input power to the cutput
power.

Decibel D=10 logioP1/P2
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The decibel can be expressed in terms of the ratio of input voltage (or current) and the output

voltage (or current.)

D=20 log1olV1/V2] =20 log1ali1/12]

* One decibel is equal to 0,115 N.
Low Pass Filter

By definition a low pass (LP) filter is one which passes without attenuation all frequencies up

to the cut-off frequency [, and attenuates all other frequencies greater than f; The attenuation
characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies
from zero up to the cut-off frequency. The band is called pass band or transmission band. Thus,the

pass band for the LP filter is the frequency range 0 to f-.The frequency range over which
transmission does not take place is called the stop band or attenuation band. The stop band fora LP

filter is the frequency range above f¢ .

T Pass . T z
o Band Attenuation o gﬂenuahon Pass
Band and Band
ff;; —_— . — f r{: —— f
Low Pass Filter High Pass Filter

R —
—

Attenuation | pgss Attenuation o | Pass | Attenuation | Pass
Band Band Band Band| Band Band
f1 f: — f f1 1 f
f2

Band Pass Filter Band Elimination Filter

Fig.9.1 (b)

High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off frequency, f-, and
passes all frequencies above f-. Thus the pass band of this filter is the frequency range above f-, and

the stop band is the frequency range below f; . The attenuation characteristic of a HP filter is shown
in fig.9.1 (b).

Band Pass Filter
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A band pass filter passes frequencies between two designated cut-off frequencies and
attenuates all other frequencies. It is abbreviated as BF filter. &s shown in fig.5.1 (b), a BP filter has

two cut-off frequencies and will have the pass band f2 —f1; fi is called the lower cut —off
frequency, while f> is called the upper cut-off frequency.

Band Elimination filter
A band elimination filter passes all frequencies lying outside a certain range, while it

attenuates all frequencies between the two designated frequencies. It is also referred as band stop
filter. The characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies

between f1 and f> will be attenuated while frequencies below f1 and above 7 will be passed.

9.2 FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be

satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters
are designed with an assumption that the elements of the filters are purely reactive. Filters are
made of symmetrical T, or m section. T and n section can be considered as combination of
unsymmetrical L sections as shown in Fig.59.2.

C—— - e L i =
222 222 [_] ll?I—ri.‘
(&) (b)
l ~ = l——li , s
e e o e
s el | I - i IR — e - s
Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade
connection of several T and m sections constitutes a ladder network, & common form of the ladder
network is shown in Fig.5.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents then
section ladder network. It can be cbserved that both networks are identical except at the ands.
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e £y Z4
S o B RED = e
zZ 22
(a)
21 Zy Z5
> al = ] : Fis)
222 22 2.2
(b)

Fig. 9.3

9.3 EQUATIONS OF FILTER NETWORKS

The study of the behavior of any filter requires the calculation of its propagation constant ¥,

gttenuation o, phase shift B and its characteristic impedance Z ¢ .
T-Network

Consider a symmetrical T-network as shown in Fig. 3.4,

Z£1 Z
1 2 2 5
B—N N — ANAN—S _L
"2-2 £0
i b ;_5".-

Fig.9.4

if the image impedances at port 1-1' and port 2-2" are equal to each other ,the image
impedance is then called the characteristic, or the iterative impedance, Z ; .Thus, if the network
in Fig.9.4 is terminated in Z o _its input impedance will also be Z . The value of input impedance

for the T-network when it is terminated in Z g is given by
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_—
; +Z, + Z,
also 2, =Zy
Z
zz.[ Lz ]
- zn::i___ : 2+_",

% (N4 Z, +27,7,)

s 2y +22)2, + 22,2y +22,Z, + 42,2,
’ 22, +225 +22,)

473 =7} +42,2,

2
Z3 = i‘::—+.zr,;52

The characteristic impedance of a symmetrical T-section is

Zot can also be expressed in terms of open circuit impedance Zgc and short circuit impedance
Z 5 of tha T— network . Fram Fig. 9.4, the open circuit impedance 7 ge =71/2 +Z > and

Ziin 3
! d -

Sz

2 2

s Zr 422,
o 2Z) 4+ 42,

21
Zoe X2y = Z,2;5 + TI

= Zay OF Zor = JLopeZse
{9.2}

Propagation Constant of T- Network

By definitation the propagation constant ¥ of the network in Fig.9.5 is given by Y =log . 11/l
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Writing the mesh equation for the 2nd mesh, we get

_‘1:.1., ..gJ..
2 2
17 i Y e L 2

A 2
CVD § Za g Za

1= 2’

Fig.9.5

&

1
— 4 .4 Z
hH 3 s 9 =@
!2 22
é“"zz +Zy=7Zze"
2 ; Z,
Zy=2Zy(e"-1)—=
2 (9.3)
The characteristic impedance of a T —network is given by
2
A
> 1
4
(9.4)

Squaring Esg. 9.3 and 9.4 and subtracting Eq.9.4 from Eg.9.3, we get
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Zz -

ZiEer=1? +7;——z,zz(e* - 1)—"2;——2122 =0

Zi(e -1 ~2,Z,(1+e"—1)=0

Zi(eY —1)?* =2,Z,e" =0
Zy(e¥ —1)? —Z,e¥ =0

(E."r. _1)2 et ZI*?T
Z,
et 12 = CIEIa.
Zye Y

Rearranging the above eguation, we have

e Y(e?® +1—2e7) = <
ZZ

(e 4+e ¥ —-2)= =1

2

Dividing both sides by 2, we have

e’ e’ =y Z
2 27
coshy — 1+ 2
T

{&5)

Still another expression may obtained for the complex propagation constant in terms of the
hyperbolic tangent rather than hyperbolic cosine,
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sinh v = \/cos Ay —1

Zi-\" Y
= 1+ —1= |24 S
27, Z 27
7é & Sngy
sinhvy=|zz + 2 _ Zor
2 4 Zy
{3.6)
Dividing Eq.9.6 by Eq.9.5, We get
s
tanh v — 07 =
Z‘_y = V= il
Z
b e
But Zz +_2' = Zy,
Also from Eq. 9.2,
Zor = 7o Z
tanh =~ = g::'
Also sinh % = J-;{t:i.'rﬁh"'r —
Where coshy = 1| +(Z,/225)

= “y
: 475

(8.7)
m — Network

Consider asymmetrical m—saction shown in Fig. 9.6. When the network is terminated in Z 5 at port
2 —2 "its input impedance is given by

=1 2
] -— —— P N N el
ki / bs l
1% -— =
Fig.9.6
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3 2Z, + Zp

Ly P ety Lo 4 oF
' T 27, +Z, ’

7 lz. +

By definition of characteristic

impedance, Z,, = 2,

27, Zo '
M zzz[zl+zzz+zbl
o= 22, Zo
L2552 0 4 2F
oz Dz, -
277 2Z,(22,25 + ZoZy +2Z4Z5)
Z $2ZGZy = 2T
B T AV AR e (22, + Zy)

2Z,Z\Zs + 223 + 2252, + 42570 + 2774
— 47,72 ¥ 22,7,7, + AZp 73
2,72 42,25 = AZZ3
Z2(Z, +42Z,) = AZ\Z]
72 = Az 22
Z,+4Z,
Rearranging the above equation leads to

7. = __Z_LEE__
° N1+ 2, /42,

(9.8

which is the characteristic impedance of a symmetrical mw-network,

Z\Z,

NZZ 42 14

ZQ“. —

From Eq. 9.1

(9.9)
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Z o can be expressed in terms of the open circuit impedance Z gc and short circuit
impedance Z 5¢ of the m network shown in Fig.5.6 exclusive of theload Z ¢

From Fig.5.6, the input impedance at port 1-1 when port 2 -2 is open is given by

;22 +22))
s Z, +4Z,

Similarly, the input impedance at port 1 - 1J when port 2 -2 'is short circuit is given by

= oy 5
Gy i ST

AL % o T
Zi VAT T ZT42Z,

Hence Z,.xZ, =

Thus from Eq. 9.8

zﬂ‘ﬂ' = "J zﬂ‘l‘.‘ z.w_
(3.10)
Propagation Constant of m— Network

The propagation conistant of a symmetrical m— section is the same as that for a symmetrical T
— Section.

4
27,

9.4 CLASSIFICATION OF PASS BAND
AND STOP BAND

i.e. cosh y= 1+

It is possible to verify the characteristics of filters from the propagation constant of the network, The
propagation constant ¥, being a function of frequency, the pass band, stop band and the cut-off
point, i.e. the point of separation between the two bands, can be identified. For symmetrical Tor nt
—section, the expression for propagation constant ¥ in terms of the hyperbolic functions is given by

Eqgs 9.5 and 9.7 in section 8.3. From Eq.9.7, sin h¥/2 =(Z 1 /4Z3) .

If Z1 and Z3 are both pure imaginary values, their ratio, and hence Z1 /473 , will be a pure real
number. Since 71 and Z; may be anywhere in the range from -jg to +jx, Z1 / 422 may also have any
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real value between the infinite limits . Then sin b ¥/2 =7 1 V475 will also have infinite limits,
but may be either real or imaginary depending upon whether Z1 / 423 is positive or negative.

We know that the propagation constant is a complex function ¥ = a+jB , the real part of the
complex propagation constant o, is 8 measure of the change in magnitude of the current or voltage
in the network ,known as the attenuation constant . B is a3 measure of the difference in phase
between the input and output currents or voltages. Known as phase shift constant Therefore o and

B take on different values depending upon the of Z1/ 4Z; . From Eq.8.7, We have
: IR 1. N L | . o,
sinh = smh[—*+£ = smh—cusE + jcosh—sin B
2 2t 2 g2 2. 2

Z!
4z
(9.11)

Case A

If Z1 and Z; are the same type of reactances, then [Z1 /4Z; ] isreal and equal to say a+x .

The imaginary part of the Eq. 5.11 must be zero.

cosh E:\u'rl E — 0
2 2
(2.12)
sinh 2 cos E =X
2 2

o and B must satisfy both the above eguations.

Equation 9.12 can be satisfied If B/2 =0 or nm, wheren=0, 1, 2,....., then cos B/2 =1 and sinh o/2=x
=V(Z1/423)

That x should be always positive implies that

- - -

2
—LIsOada=2sinh™ [—-
47
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Since o 20, it indicates that the attenuation exists.
Case B

Consider the case of Z1 and Zz being opposite type of reactances, i.e. 21 / 427 is negative,
making V Z1 / 42z imaginary and equal to say Ix

*The real part of the Eq.5.11 must be zero.

:&:inhE {:GSE = 0
2 >

e

{53.15)
L‘USI‘IESin E =X
2 2
(9.16)

Both the equations must be satisfied simultaneously by o and B. Equation 9.15 may be
satisfied when o =0, or when p = . These conditions are considered separately hereunder

(i) When a =0; from Eq. 9.15, sinh o/2 =0.and from Eq.9.16 sin B/2 =x=V( Z1 / 4Z3) . But the
sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z1 / 425
. and having maximum value of unity. It indicates the condition of pass band with zero
attenuation and follows the condition as

-
| R B
S-=0
B=2sin"" -5‘
423 (9.17)

(i) When B =n, from Eq.9.15, cas B/2 = 0. And from Eq.9.16, sinB/2 =+ 1; cosh af2 = x=v (£1 f 473)

Since cosh of2 2 1, this solution is valid for negative 73 / 475 ,and having
magnitude greater than, or equal to unity. It indicates the condition of stop band since a = 0.

=
o= = = ]
47,
« = 2cosh ! f’
42, {9.18)

It can be observed that there are three limits for case A and B. Knowing the values of

Z1and Z3, it is possible to determine the case toc be applied to the filter. 21 and Zz are made of

different types of reactances, or combinations of reactances, so that, as the frequency changes, a
filter may pass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i)
in case Bis the transmission band,
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The frequency which separates the attenuation band from pass band or vice versa is
called cut-off frequency. The cut-off frequency is denoted by fc, and is also termed as nominal
frequency. Since Zpis real in the pass band and imaginary in an attenuation band, fc is the
frequency at which Zg changes from being real to being imaginary. These frequencies occur at

Z, )
= {) o o=
az, R I 9.18a)
z
__4Z1 =—lorZ, +42Z, =0
2 9.18 {b)

The above conditions can be represented graphically, as in Fig.5.7.

t|::|t {napars)
Stop Pass Stop
Band Band Band
— —1 o Wit
a7
Fig. 9.7

9.5 CHARACTERISTIC IMPEDANCE IN
THE PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eg. 5.1 We have

7 7
Zop =s|—+2,2, = 12,Z,|14+—=-
0r 4 1“2 142 422

If Z;1 and Z7 are purely reactive, let Z; =jx1 and Z2 = jxz , then
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X
b ) &
Zor = [—Xix5 |14+
Xy

{2.19)

A pass band exists when x1 and x3 are of opposite reactances and

X

1 & =i
4x,

<0

Substituting these conditions in Eg. 9.19, we find that Zp7 is positive and real. Now consider
the stop band. A stop band exists when x1 and x; are of the same type of reactances; then x/4xz >
0. Substituting these conditions in Eq. 9.19, we find that Zp7 is purley imaginary in this attenuation
region. Another stop band exists when x; and x ; are of the same type of reactances, but with x1/4x;
«<-1.Then from Eq.9.15, Zg7 is again purly imaginary in the attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance Rol{Zo7 = Ro), the input
impedance is Ry and the network transmits the power received from the source to the Rp
without any attenuation. In a stop band Zg7 Is reactive. Therefore, If the network is terminated in
2 pure reactance { Zp = pure reactance), the input impedance is reactive, and cannot receive or

transmit power. However, the network transmits voltage and current with 50" phase difference
and with attenuation. It has already been shown that the characteristics impedance of a symmet

rical - section can be expressed interms of T, Thus, from Eq.9.9,Zgn = Z172/Z07 .

Since Z3 and 2 are purely reactive, Zon is real, if Zo7Is real and 2oy is imaginary if 2ot
is imaginary. Thus the conditions developed for T — section are valid for m —sections.

9.6 CONSTANT -K LOW PASS FILTER

& network, either T or m, is said to be of the constant — k type if 21 and Z2 of the network satisfy the

relation

P i = k‘z
{9.20)

Where Z; and Z; are impedances in the T and i sections as shown in Fig.9.8.Equation 9.20 states

that Z1 and Z3 are inverse if their product is a constant, independent of frequency. K is a real
constant that is the resistance. k is often termed as design impedance or nominal impedance of the
constant k—filter,
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The constant k, T or i type filter is also known as the prototype because other more complex
network can be derived from it. A prototype T and n— section are shown in

£4] Z
2 ?1' Z
N e e T
L/2 Li2 i
Z; T ¢C 225 /2 cl2 7 27
(a) (b)

Fig.9.8
2
Fig.9.8 (a) and (b), where Z1 = jwy and Zz =1 / jwc . Hence 2177 = L /C= k which
is independent of frequency.

(9.21)

Since the product Z4 and Z3 is constant, the filter is a constant — k type. From Eq.5.18 (3] the
cut-off frequencies are Z; /423 =10,

;. W L.C
4

ie. f =0 and . —]
4z,

S L
4

or fL =
N LC

(9.22)

The pass band can be determined graphically. The reactances of Z1 and 4Z; will vary with
freguency as drawn in Fig.9.9.The cut-off frequency at the intersection of the curves Z; and -4z3 is
indicated as fr . On the X —axis as Z1 = -4Z; at cut-off frequency, the pass band lies between the

freguencies at which Z1 =0, and Z3 =-4Z3.
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r4

Attenuation

Reactance Bai

Fig.9.9

All the frequencies abave fir lie in a stop or attenuation band , thus, the network is called a
low- pass filter . We also have from Eq.5.7 that

e ’— 2LC  JeJLC
S gzl 4 2

From Eg.5.22

1
SILC =
S
sinh ! = J_z.'?f.:.[ — ‘_,-i.
2 2w/, dor -
We also know that in the pass band
—1 = ) =0
2= ]
—w* LC

- —_— )
1 = A

N 4
-l-:—[—"—f_—] =0

“

:—f:—{l

or

and |3=.?.Biu_‘[-}{ ];a-—
In the attenuation band, "4
-
47,

51
4

= 2cosh ! |—1-

g P [42?

J

1, i.e.— 1
= usf«:: -:::’ !

— 2cosh ! [i;-], B=wm

The plots of o and B for pass and stop bands are shown in Fig.5.10
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-1
Thus, from Fig. 9.10, a=0,B=2sinh (f/fc)forf<fc

a=2osh (FlfekB=rntorfsfe

L

=]
n —t
"
-
(]
¥
- Nl
n

Fig .9.10

The characteristics impedance can be calculated as follows

Zoy = \fl —

(9.23)

From Eq.9.23, Zgris rael when f< fir, i.e.in the pass band at f=fc, Zot; and for f= fr, Zotis
imaginary in the attenuation band , rising to infinite reactance at infinite frequency . The variation

of Zgt with frequency is shown in Fig.9.11

1

Ly

T |

Zon | 2 s

K -

| P
-
Zon ZoT Ray - | % -
T t Zor frsadt
I
Passband |7 Attenuation
/
: l
0.5 1 e ——

145




CNT, Semester 3%, Diploma Engineering (Electrical & Electronics)

Fig.9.11

Similarly, the characteristics impedance of a m— network is given by

{9.24)

The variation of Zor with frequency is shown in Fig.9.11 . For f<fc, Zorisreal ;atf=fc,Zo7ls

infinite , and for f > fr, Zon is imaginary . A low pass filter can be designed from the specifications
of cut-off frequency and load resistance.

At cut-off frequency, 71 =-473

—4
Jjo, C
w2 2LC = 1

Jw L =

Also we know that & = L/ C is called the design impedance or the load resistance
-
C

wf2ARC2= 1

C= P gives the value of the shunt capacitance
T

o

el B T
and L =k’C = T gives the value of the series inductance.
m

Example 5.1.

Design a low pass filter (both m and T—sections ) having a cut-off frequency of 2 kHz
to operate with a terminated load resistance of 300 {1,

solution. It is given that k =V(L /C) =500 0, and frr= 2000 Hz
we know that L =k/nfo-=500/3.14 x 2000 = 79.6 mH

€ =1/mfck =1/3.14.2000.500 = 0.318 pF
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The T and i —sections of this filter are shown in Fig.9.12 (a) and (b) respectively,

L2 =398 mH L/2=39.8mH L=7T9.6 mH
— odad" ~ 00 e = 880606 -
= L =
] I B
- C =03189uf = ; ;
& | &
(=) (b)
Fig.9.12
Constant K — high pass filter can be obtained by changing the positions of series and shunt arms of
the networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.2.13,where Z1 = -j/w
cand Zz=jwl.
2C 2C C
i} (| a1 ir? il
Zy Z4 Z
2 2
L 22 2L Q 22 2L Q 27,
3 ® &
(a) (b)

Fig.9.13

Again, it can be observed that the product of 21 and Z; is independent of frequency, and
the filter design obtained will be of the constant k type .Thus, Z1Z7 are given by

) = Byt
T h s fal e ek
2= e C

The cut-off frequencies are given by Z3 =0and Z, =-4Z3 .

Z1=0indicates jwC=0,0rw 2o

151




CNT, Semester 3%, Diploma Engineering {Electrical & Electronics)

From Z1=-473
jfwl =-4 juwl

2
w LC=1/4

or | —

(9.25)

The reactances of Z; and Zz are sketched as functions of frequency as shown in Fig.9.14,

Reactance —»

—— Passband —

Fig.9.14

As seen from Fig.5.14, the filter transmits all frequencies between = frand f=a. The point fr
from the graph is a point at which Z1=-473 .

From Eq.9.7,

sinh X = el e /pon=ln
2 47, A’ LC

From Eq. 9.25,
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1
le 5 411'\,!',{._5
=l 1
VL  4mf
- 2/ 12
sinh Y =[O L) _ )
2 dw* /

-1
In the pass band, -1< Z1/4Z; < 0, a=0 or the region in which fe /f<1isapassbandB=2sin  (f/
f)

In the attenuation band Z1/4Z:<-1iefc/f>1

a=2cosh’™ 21/ 425]

=2cos \(fc/f);B=-n

Fig.9.15
The plots of o and B for pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be designed similar to the low pass filter by choosing a resistive load r
equal to the constant k, suchthat R=k=vL/C
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i k 1
Y 4wl 4AwCk
Since Jes L ,
k
7 k 1

o
/.. 4/ k

The characteristic impedance can be calculated using the relation

] [ oM I
e \/’“ 4.-'2] \/c 4m?.c.c']

2

Similarly, the characteristic impedance of a m—network is given by

) O — —
T B R v o e s i B e it i SRS Zﬁi" P ?ﬂT
Zor i
0 f, —-f
(9.26)
Fig.9.16

The plot of characteristic impedances with respect to frequency isshown in Fig.8.16.

Example 9.2
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Design a high pass filter having a cut-off frequency of 1 kHz with a load resistance
of 60010,

Solution. It is given that R | = K=600 10 and fr =1000 Hz
L=K /dnfe=600 /4 xmx 1000 = 47.74 mH
C=1/dnkfc = 1/4m » 600 x1000 = 0.133 pF

The T and n — sections of the filter are shown in Fig.9.17.

2C = 0.266 uF 2C = 0.266 puF C = 0.133 pF

e [} [ = [} E —»

E
[ =47.74 mH 2L ® 2L 95.48 mh

| =Y

- - - -

(a) ()
Fig.9.17

9.8 m - DERIVED T - SECTION FILTER

It is clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k-type

filters. The characteristic impedance, Zp is a function of frequency and varies widely in the
transmission band. Attenuation can be increased in the stop band by using ladder section, i.e.by
connecting two or more identical sections. In arder to join the filter sections, it would be necessary
that their characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match at all frequencies, they would also have the same pass band . However,
cascading is not a proper solution from a practical point of view .

This is because practical elements have a certain resistance, which gives rise to
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by
cascading also results in an increase of ‘a’ in the pass band .If the constant k section is regarded as
the prototype, it is possible to design a filter to have rapid attenuation in the stop band , and the
same characteristic impedance as the prototype at all frequencies . Such a filter is called m — derived
filter. Suppose a prototype T — network shown in Fig.9.18(a) has the series arm modified as shown in
Fig.9.18 (b) , where m is a constant . Equating the characteristic impedance of the networks in
Fig.5.18, we have
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Z4l2 Zyl2 mZ4i2 mZ4/2

(a) (b)
Fig.9.18

Lor=ZgT’

Where Zg7 ,is the characteristic impedance of the modified (m —derived) T — network.

o L 222 i
22, = J’"4 L mZ, 2}

ZZ 223
422, = ”’T' +mZ,2Z

el __ le 2
mZIZE ——4-'(1'—“"'! )+Z}ZZ

Z Z
it W7 g (REPPF Wi et
2 4m( } m

(9.27)

It appears that the shuntarm Z 2 consists of two impedances in series as shown in Fg.9.19.

rrZ 402 rr=4/2
i 7= AT Lecacs b i
== lrrr

Z3( 1 —r =)

Fig.9.19
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From Eq.9.27, 1— mz,fa-‘.m should be positive to realize the impedance Z .2 physically ,
i.e.0<m=1 . Thus m — derived section can be obtained from the prototype by madifying its series
and shunt arms .The same technigue can be applied to i section network. Suppose a prototype m—
network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 3.20(b).

Z 2}
~ == o ST i .
L 2eal L '
22, ey 2im 2Z9im
(@) (b)
Fig.9.20
Lon =2 rII}J'[

Where Z I[m is the characteristic impedance of the madified (m — derived) m — network.

&

i d et o

22, i ' m

Z Z!

1+ -] b+ 2
422 4‘22-’[”1
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Squaring and cross multiplying the above equation results as under.

4Z/Z, + 2,7!

m

(42,2, + mZ[Z,) =

Zy 1 ydis
m I

—mZ, | =44, Z,
zl'z!

4, 4 mz,

dm  m 4

or Z;' =i

= 212,
=y
2 4 —L(l—=m*)
m  4m
A am 5 mZ, lfz“ht:
7/ — (=) (1—m~)
o £ b Z,4m
_g?-.‘?f".z HZimME
m(l —m*) (L—=m")

{9.28)

It appears that the series arm of the m — derived n section is a parallel combination of mZ; and
4dmZs f1-m .The derived m section is shown in Fig.9.21.

m — Derived Low Pacs Filter

In Fig.5.22 , both m — derived low pass T and 7 filter sections are shown. For the T —section shown
in Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency f; above cut-
off frequency f¢.

If the shunt arm is series resonant its impedance will be minimum or zero Therefore |, the
output is zero and will correspond to infinite attenuation at this particular frequency . Thus, at fy

mwl=1- mzfdm wy L, where wy is the resonant freguency

158




CNT, Semester 3, Diploma Engineering (Electrical & Electronics)

mZ;

L-3 E=-3
2Z>/m .1:‘-1&:_ > 2Z./m
- E 3
Fig.9.21
1—m?
—am ©
mii2 mirz2 —
i g l i
A iy 3 mocil2 ﬂ: T moilz?
. ]
(a1) (b)
Fig.9.22
e L 2
(1 —mHLc
1
S, = = J

T LC(1 — m?*)

Since the cut-off frequency for the low pass filteris f.= 1/m/LC

o
fo=—Fe
1—m
(9.29)
2 ]2
or m= l—=|=
7
(9.30)
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If a sharp cut-off is desired,f; should be near to fz. From EQ.9.29,it is clear that for the
smaller the value of m,f; comes close to f; .Equation .30 shows that if f; and [ are specified , the
necassary value of m may then be calculated. Similarly, for m — derived n section, the inductance
and capacitance in the series arm constitute a resonant circuit . Thus , at iy a frequency
corresponds to infinite attenuation, i.e. at fa

o, . — l
[ 1 m ]m c
4 .|
it et .
L —m*®)
: 1
.fr " = >
11'\/!..(_,'(1 — ")
Since f. = ot i
- MRS

E b :
_I‘_ — —‘_- = _‘f.‘c
\fl —m?

{2.31)

Thus for both m — derived low pass networks for a positivevalue of m{0<m< 1), fa>f:.

Equations 9.30 or 5.31 can be used to choose the value of m, knowing ; and f; _ After the value of m
is evaluated, the elements of the T or m— networks can be found from Fig.9.22. The variation of

attenuation for a low pass m —derived section can be verified froma=2 ED'Sh-I VZ1/4Zs forfe< f<
fa . For Z1 = jwl and Z3 = -j/wC for the prototype.

L f
« = 2cosh ! -—j;' =
1_[ S/ ]
S
i Z
and =2sin~! =L} = 24
&} 1z, [ sin

Figure 9.23 shows the variation of o, § and Zp with respect to frequency for an m — derived
low pass filter.
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Example 9.3

Design a m —derived low pass filter having cut-off frequency of 1kHz,
design impedance of 400 0}, and the resonant frequency 1100 Hz.

Solution. k=400 (), fc=1000 Hz ; f3 =1100 Hz

’ mm:l
_,(]_
fm \/ llt}ﬂ H1e

Let us design the values of L and C for a low pass , K —type filter [prototype filter).

From EqQ.9.30

Thus,

Kk 400
L j— —_ _—— &
= . 1000 127.32 mH

I |
Cen = = 0.79
wkf. <400 = 1000 SRt

The elements of m— derived low pass sections can be obtained with reference to Fig.9.22.

Thus the T-section elements are
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mL  0.416x127.32x103

| —

A > = 26.48 mH

mC = 0.416 X 0.795 X 106 = 0.33 uF

l—m2

4m 4-0416

The Tr-section elements arc

mC  0.416x0.795 x 107°
vk 2

= 0.165 pF

L=t o 1-(0.416)°

- % 0.795 %10 ® = 0.395
aAdm 4=x0416

2
g = 1200A416) 150324107 = 63.27 mH

[T 3

mlL = 0.416 X 127.32 X 102 = 52.965 mH

The m —derived LP filter sections are shown in Fig.9.24.

52.965 mH
26.48 mH 26.48 mH — B0
-——fmr\—l——fmn“—' :
0.33 pF W ‘ if W
o 0.395uF | 0
&2 par
63.27 mH o T o
- o - -
(a) (b)

Fig.9.24
m — Derived High Pass Filter
In Fig.9.25 both m — derived high pass T and i — section are shown.

If the shunt arm in T — section is series resonant, it offers minimum or zero

impedance. Therefore, the output is zero and, thus, at resonance frequency or the
frequency corresponds to infinite attenuation.
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L |
W, — = a
nm
m - e > C
1—m
-“!’“ L
1—m?
2CIm 2CIm LXh T R
o | === . g2z s
Lim clim
20/m
am_ o~ 2LIm
= T 1-m " £ 1l
(a) (I3}

Fig.9.25

5.

- s ey [ 1 - =

e e o 4LC

5 oy

ml—m

Ky 1 —m” or f. _w"l--mz
= 2JLC *  amJLC

From Eq. 9.25, the cut — off frequency f of a high pass prototype filter is given by

|
te 4 LC
foo=f.A1—m?
(9.32)
- 2
Ev
m= {l—|—=
0
(9.33)

Similarly,for the m — derived m— section , the resonant circuit is constituted by the series
arm inductance and capacitance . Thus, at fx
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e 1

A v=
 ——— 4 e c”
rre
y
2 >
W = - =—
& - 31I.C
1 — m2 - Vi1 —m*
S or fo =
e > JI.c ' anwJILC
S0 NI (e
{ | l
o I I
Httanjuation rPass band
Band | =M
|
|
| |
0 |
"_""rn f{.‘ e f
(a)
Fig.9.26

Thus the frequency corresponding to infinite attenuation is the same for both sections.

Equation 9.33 may be used to determine m for a given fy and fr- . The elements of the m—
derived high pass T or m— sections can be found from Fig.9.25. The variation of o, f and Z

with frequency is shown in Fig. 9.26.

B
ol fe —
I
i
L I FPass band
Aftenuation
Band
(b)

Fig.9.26
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Exampie 9.4.

Design a m-derived high pass filter with a cut-off frequency of 10kHz; design
impedance of 50 and m =04,

Solution .For the prototype high pass filter,

L 500
darf, 4 qr > 10000

= 3.978 mH

e I
4mks. 41> 500 > 10000

=0.0159 pF

The elements of m-derived high pass sections can be cbtained with reference to
Fig.9.25.Thus, the T-section elements are

2C  2x%0.0159%10°

= e = 0.0795 wF
L _3.978%102 _ 95
= 04 =9, mll
G 4 2 0.4
— 5 C=———_"x0.0159%10"% = ;
- 1—(0.4)2 0.0302 pF

The mw-section elements are

2L  2x0.0159x%10?

= = = 19.89 mH
A 4 0.4
—_— = —— " 3 07’10 = 7, :
T T 7.577 mH

c 0.0159
e A o

ﬁ —— -
= O 10 = 0.0397 nF

T and 1 sections of the m —derived high pass filter are shown in Fig.9.27.

7.5777 mH
0.0795 uF 0.0795 uF o8B
. i i -
= i)
T
9.945 mH = 0.0397 pF £
(=] ooy
&= =
T 0.0302 uF & 2
- aw -
(a) (b)
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Fig.9.27

9.9 BAND PASS FILTER

As already explained in Section 8.1 , a band pass filter is one which attenuates all frequencies below
a lower cut-off frequency fi and above an upper cut-off frequency f7 . Frequencies lying between fi

and f2 comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may be

obtained by using a low pass filter followed by a high pass filter in which the cut-off frequency of
the LP filter is above the cut-off frequency of the HP filter , the overlap thus allowing only a band of

frequencies to pass . This is not economical in practice; it is more economical to combine the low
and high pass functions into a single filter section .

Consider the circuit in Fig.2.28, each arm has a resonant circuit with same resonant
frequency, i.e. the resonant frequency of the series arm and the resonant frequency of the shunt
arm are made equal to obtain the band pass characteristic.

Ly Ly

2 2C4 2C1 2 C1
o 111 R | s e {11 1 |

ol el

C? L 9 21.;;

—
s

(a) (b)

Fig.9.28

Far this condition of equal resonant frequencies.

For this condition of equal resonant frequencies.

LI ] .
w, — = ———— for the series arm
2 2w,
from which, ?,L,C, =1
(9.34)
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and .-_]—: hiis for the shunt aim

wC;
from which,  w;L,C; =1
{9.35)
WHkaCy — 1 =gl C

L e
(9.36)

The impedance of the series arm, £, is given by

a 2 -+
= J oy fdl"l_!
Z == e m—— =T a e  —
1 ['”“t’ mc',] ""[ @G, ]

The impedance of the shunt arm, &, is given by

. 1
JoLy ——
e Ja, = Jwl.,
2
e S 1 | w2 L
JCy

2.7, — @ L) =1 Jood s
Wi wC, 1= C

1—w’ IO,

=l et O —1
= A

From Eq.9.36

ZIZZ 2o £ = ‘£L - .‘f-z
oS

Where k is constant. Thus, the filter is a constant k — type .Therefore, for a constant k—type in the
pass band.

&
—1 < —L = 0. and at cut-ofT frequency

4z,
Z, =-4z,
ZP =—-4z27Z, = —Ak?
2', = i‘j?.k
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i.e. the value of Z1 at lower cut-off frequency is equal to the negative of the value of Z; at the
upper cut-off frequency .

(e )=t )

oy — ! == 1 — sl

A—wfL,C) = ‘—L(‘“lect —1)

(9.37)
From £q.9.34, L1Ci = 1 fwg_

Hence Eq.9.37 may be written as

F 2
o [ s SR
2 = 2

iy 2 | Wy

2 2 L oE 2
(w5 —w] o, = w(w; —w])

2 i 2 .r a >
‘“n;"z @) W, = W5 — W wy

*
Wy, == W W,

JSo =NAS>

(9.38)

Reactance
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Fig.9.29

Thus, the resonant frequency is the geometric mean of the cut-off frequencies.
The variation of the reactances with respect to frequency is shown in Fig.5.29.

If the filter is terminated in a load resistance B = K, then at the lower cut-off frequency.

|
+ jo, L, | = —2 jk
[!“-‘ic| 4 J
(.IJIC] : g

l N (AJ:IC,-IILI - 2kmlc'|

Since LGy o= —
2 mn
1— 2L — 2k, C
wg b
i =y [‘f—]] = dmwkf, C,
Ju
v =
1 = 4 C; o S
.ﬁ_’:‘: '“-'k.fl I [ _f"
Sa— 1y = Awkf, -0,
Gy L2V}
3= e
ki, [
(9.39)
; o 1
Since LiCy = —
iy
! 4“"-"‘9’].&_
L=~ ey A e L e
wu Gy wolfz — A)
Bt
w(fz — 1)
{9.40)

= J5R)
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To evaluate the values for the shunt arm, consider the equation

2 %

iy

Zify = F o2 ¥
: = Ct = 2= )k
L Ly = Chk v s
(9.41)
1
and G;= i"f = —
ke m(fh =Sk
(9.42)

Equations 5.39 through 9.42 are the design equations of a prototype band pass filter. T he
variation of o, p with respect to frequency is shown in Fig.9.30 .

—
——— i ——— ——

el i, T S A A —

fy fo o — — fy
Fig.9.30
Example 9.5.

Design k— type band pass filter having a design impedance of 300 (1 and
cut-off frequencies 1 kHz and 10 kHz.

Solution .
k=500 €; f1 = 1000 Hz; f = 10000
Hz Fram Eq.9.40,
L = *rr{j;—— 7 = “59[::)0 = 55:5 mH = 16.68 mH
I;r{;m Eq.9.39,
D ey [T 9000

= e . =0.143 uF
dnkf f;  4xwx 5001000 x10000
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From Eq.%.41,
L: = C|k2 - 35? mH
From EqQ.9.42,

C, = f_z = 0.0707 uF

Each of the two series arms of the constant k, T—section filter is given by

oy - 100 = 8.84 mH
2 2

2C, = 2 X 0.143 = 0.286 pF

And the shunt arm elements of the network are given by
C; = 0.0707 nF and L, = 3.57 mH

For the constant-k, 7 section filter the elements of the series arm are
C, = 0.143 wF and L; = 16.68 mH

The elements of the shunt arms are

C, 0.0707
2

= 0.035 pF

2L, = 2 X 0.0358 = 0.0716 H

9.10 BAND ELIMINATION FILTER

A band elimination filter is one which passes without attenuation all frequencies less than the
lower cut-off frequency f1, and greater than the upper cut-off frequency fz . Frequencies lying

between fi and f; are attenuated. It is also known as band stop filter. Therefore, a band stop filter
can be realized by connecting a low pass filter in parallel with a high pass section, in which the
cut-off frequency of low pass filter is below that of a high pass filter. The configurationsof Tand

constant k band stop sections are shown in Fig.9.31. The band elimination filter is designed in the
same manner as is the band pass filter.
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5
5™

_f. 12 Lqf2 Ly
B0 — 80 A r—"00—
o — ey 1
2¢, L 2C 2L Cq
T & T G2 T
(a) (b)
Fig.9.31

As for the band pass filter, the series and shunt arms are chosen to resonate at the same
frequency w g . Therefore, from Fig.9.31 {a) , for the condition of equal resonant frequencies

L | ;
a1 — for the series arm
> 1
ar Ky
LIC'I
(9.43)
g g == . — for the shunt armm
woCh
o g L6
(S:44)
1 1
LG IaCs
Thus L,Cy = LayCh
[(9:45]

It can be also verified that

ZZ5 = :_*12 - iﬂ_l L2
(9.46)
and fy= M
(9.47)

At cut-off frequencies, Z; =- 475

Multiplying both sides with Z; , we get
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Z{Z, == 25 =k

K
Z, =i
2 _.Fz

(9.48)

If the load is terminated in a load resistance, R =k, then at lower cut-off frequency

1 &k
s = - = j—
- I {“IC.I mjl’z] J 2
| &k
ity o B amnikE
=
I—WICIL'::WIC2-
i
From Eg.5.44,
|
L,Ch = —5
O
2
oy LR
mﬁ 2‘“: 2
T J—l] = knfiC;
fo. .
o= sdz]-(2]
P kwf, So
Since Jo = Jﬁiz
e B 17 L. 5
= Ry |
1 | 3=y
P e
3 e I
{9.49)
From Eq.9.44,
1
wh = ———
.|'2 2
L ki
“’ﬁcz wﬁ(.fz k)
Since Jo = A/
) B = L
2T an(fai— )
(9.50]
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Also from Eq. 9.46,

k* ='_£..’L=_‘[12_
G G
kS
o i
L S
(9.51)
and C, Ko
kz
(9.52)
1

~ank(f, — ;)

£
Pass
\ Attenuation Pass
1y o 1z e
"-\..___\_\_\_\_
T
— 4T,
Fig.9.32

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 3.49

through Eq.9.52 is the design equations of a prototype band elimination filter. The variation of a ,p

with respect to frequency is shown in Fig.5.33 .
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Fig.9.33

Example 5.6.

Design a band elimination filter having a design impedance of 600 0] and cut-off frequencies f1 =
2 kHz and fz =6 kHz.

Solution. (2 —f1) =4 kHz

Making use of the Egs.9.49 through 9.52 in Section 5,10, we have

L: :.fi fz_—fi Z 600 = 4000 — 63 mH
w| L > 2000 x 6000
1 1
C = = = 0.033 uF
VUamk(f, — f;)  4xmwx600(4000) e
o : s N Y
Awk(f> — f;)  4w(4000)
GRS ) Bl e SO0 L s TSR
kw| HLs 600 x< 7 { 2000 > 6000

Each of the two series arms of the constant k, 7-section filter is given by
<! =31L5mH
2

2C,; = 0.066 pF
And the shunt arm elements of the network are
L, = 12mHand C, = 0.176 nF

" - 175
For the constant k, mr-section filter the elements of the series arm are

£ =63 mH; €, =0.033



