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Module 1

Stress
Stress is the internal resistance offered by the body to the external load applied to it per unit
cross sectional area. Stresses are normal to the plane to which they act and are tensile or

compressive in nature.
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As we know that in mechanics of deformable solids, externally applied forces acts on a body
and body suffers a deformation. From equilibrium point of view, this action should be
opposed or reacted by internal forces which are set up within the particles of material due to
cohesion. These internal forces give rise to a concept of stress. Consider a rectangular rod
subjected to axial pull P. Let us imagine that the same rectangular bar is assumed to be cut
into two halves at section XX. The each portion of this rectangular bar is in equilibrium under
the action of load P and the internal forces acting at the section XX has been shown.

Now stress is defined as the force intensity or force per unit area. Here we use a symbol [ to

represent the stress.
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Where A is the area of the X —X section
Here we are using an assumption that the total force or total load carried by the rectangular

bar is uniformly distributed over its cross — section. But the stress distributions may be for

from uniform, with local regions of high stress known as stress concentrations. If the force
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carried by a component is not uniformly distributed over its cross — sectional area, A, we must
consider a small area, ‘0A’ which carries a small load ‘6P’, of the total force ‘P', Then

definition of stress is

As a particular stress generally holds true only at a point, therefore it is defined

mathematically as

Units :

The basic units of stress in S.I units i.e. (International system) are N / m? (or Pa)

MPa = 10° Pa
GPa=10° Pa
KPa= 10> Pa

Sometimes N / mm? units are also used, because this is an equivalent to MPa. While US

customary unit is pound per square inch psi.

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) shear stress.
Other stresses either are similar to these basic stresses or are a combination of this e.g.
bending stress is a combination tensile, compressive and shear stresses. Torsional stress, as
encountered in twisting of a shaft is a shearing stress. Let us define the normal stresses and
shear stresses in the following sections.




Normal stresses : We have defined stress as force per unit area. If the stresses are normal to
the areas concerned, then these are termed as normal stresses. The normal stresses are
generally denoted by a Greek letter (o)

Area
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This is also known as uniaxial state of stress, because the stresses acts only in one direction
however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses
where either the two mutually perpendicular normal stresses acts or three mutually

perpendicular normal stresses acts as shown in the figures below :
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(Triaxial state of stress)
Tensile or compressive Stresses:

The normal stresses can be either tensile or compressive whether the stresses acts out of the

area or into the area
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Bearing Stress: When one object presses against another, it is referred to a bearing stress (
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(Tensile stress)
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(Compressive stress)

They are in fact the compressive stresses ).

Forces
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Bearing stresses at
the contact surface

Sign convections for Normal stress

Direct stresses or normal stresses
- tensile +ve

- compressive —
ve
Shear Stresses:

Let us consider now the situation, where the cross — sectional area of a block of material is
subject to a distribution of forces which are parallel, rather than normal, to the area concerned.
Such forces are associated with a shearing of the material, and are referred to as shear forces.

The resulting stress is known as shear stress.



Forces acting parallel
to the area concermned

I
The resulting force intensities are known as shear stresses, the mean shear stress being equal

to
_—
&

Where P is the total force and A the area over which it acts. As we know that the particular

stress generally holds good only at a point therefore we can define shear stress at a point as
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The Greek symbol [] (tau, suggesting tangential) is used to denote shear stress.

Complementary shear stresses:

The existence of shear stresses on any two sides of the element induces complementary shear
stresses on the other two sides of the element to maintain equilibrium. As shown in the figure

the shear stress [ in sides AB and CD induces a

complimentary shear stress [ 'in sides AD and BC.
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Sign convections for shear stresses:

- tending to turn the element C.W +ve.



- tending to turn the element C.C.W — ve.

Deformation of a Body due to Self Weight

Consider a bar AB hanging freely under its own weight as shown in the figure.
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Let
L= length of the bar
A= cross-sectional area of the bar

E= Young’s modulus of the bar material w= specific weight of the bar

material

Then deformation due to the self-weight of the bar is WL

2E

Members in Uni — axial state of stress
Introduction: [For members subjected to uniaxial state of stress]
For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can

be determined as

o
f=—
AE

(1]

Suppose the bar is loaded at one or more intermediate positions, then equation (1) can
be readily adapted to handle this situation, i.e. we can determine the axial force in each part
of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part
separately, finally, these changes in lengths can be added algebraically to obtain the total

charge in length of the entire bar.
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When either the axial force or the cross — sectional area varies continuosly along the
axis of the bar, then equation (1) is no longer suitable. Instead, the elongation can be found

by considering a deferential element of a bar and then the equation (1) becomes

1.e. the axial force Pxand area of the cross — section Ax must be expressed as functions
of x. If the expressions for Pxand Ax are not too complicated, the integral can be evaluated
analytically, otherwise Numerical methods or techniques can be used to evaluate these

integrals.

Principle of Superposition

The principle of superposition states that when there are numbers of loads are acting together
on an elastic material, the resultant strain will be the sum of individual strains caused by each

load acting separately.

Numerical Problems on stress, shear stress in axially loaded members.

Example 1: Now let us for example take a case when the bar tapers uniformly from d at
x=0toDatx=1
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In order to compute the value of diameter of a bar at a chosen location let us determine

the value of dimension k, from similar triangles
(O-dii2 _ k
I X

Thus k=

(D- djx
21
therefore, the diameter 'y' at the X-section is or = d

+ 2k

_ (L -djx
=g+t
yEor

Hence the cross —section area at section X- X will be

M
Ayora = v
4
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hence the total extension of the bar will be given by expression
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hencethe tatalstrainint he bar = FDd

An interesting problem is to determine the shape of a bar which would have a uniform
stress in it under the action of its own weight and a load P.

Example 2: stresses in Non — Uniform bars

Consider a bar of varying cross section subjected to a tensile force P as shown below.

— X —

Let
a = cross sectional area of the bar at a chosen section XX then

Stress<=p/a
If E = Young's modulus of bar then the strain at the section XX can be calculated

<=</E

Then the extension of the short element < x. =<< .original length =</ E. <*
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Thus the estensionfor the entire baris
I
P éx
f= _[__
2E a
I
or totalestension =E_[6_}{
Ena

let us consider such a bar as shown in the figure below:
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The weight of the bar being supported under section XX is
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= Tpgadx
n

where p isdensityof the bar.
thusthe stressatX¥is

x
F'+ngat|x
g=—"0
a

x
orca =P+Ip.g.adx
n

Differentiatng the above equation with resoect to x we get
ca

g—=p0da
£

d )

_a: ﬁd;{

a a

intergratingthe above equationwe get

IE = Iﬁd}(
a a

0%
9 + constant
a

™

log,® =

Inorderto det ermine theconstantof int egration
letusapplythe boundaryconditions

at x=0,a=3

thus,constant = log,

or

p.9X
g

a|_p0x
| iy

or|e ¢ =

log,® = +log,

ad=_
A
Thus,
p.9.%3g
a_ =%
dp

Example 1: Calculate the overall change in length of the tapered rod as shown in figure
below. It carries a tensile load of 10kN at the free end and at the step change in section a
compressive load of 2 MN/m evenly distributed around a circle of 30 mm diameter take the

value of E =208 GN / m?.

This problem may be solved using the procedure as discussed earlier in this section
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600 mm

600 mm 2 MN/m

fe——12 mm
10kN

Example 2: A round bar, of length L, tapers uniformly from radius ri at one end to radius rat

the other. Show that the extension produced by a tensile axial load P
e
2mE?
is
If ro = 211, compare this extension with that of a uniform cylindrical bar having a radius

equal to the mean radius of the tapered bar.

Solution:

3
3
RN
3

consider the above figure let r be the radius at the smaller end. Then at a X crosssection

XX located at a distance x from the smaller end, the value of radius is equal to
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®
=Rt E(rz -n)
=T+ kx)

f

wherek = | 2~ 1—
L q
load

stressatesentinn ¥y = ——
area

- F
mE (1- k)

hence strain atthis sec tion = Sess

- H
E (14 kx)?

P.dx
Em? (1+ kx)?
Tolalextension of the bar can be found by integrating the above expression within
the limits fom =0 to »=L

L

, P.dx
Etension = | oo
0= -

Thus,forasmall length dx of the ba- at this section the extention is

=_P lj(1+kx)'2dx
Emis
_ P o]
E.ﬂﬁi -k 0
P (el 1
I:.m‘12 k k

= P 1- 1
FaZk| T+kL]

= L

Em?(1+kL)

: _(k-n)
since k i
Thus, 1+ kL = '2/
h
Therefore,the extercion = PL
il 1%

Comparing of extensions

For the case when r2 = 2.1y, the value of computed extension as above
_PL_
becomes equal to 2aEr
The mean radius of taper bar
=1/2(ri+1)

=1/2(r1+2r2)
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=3/2 I
Therefore, the extension of uniform bar

= Orginal length . strain

=L E

E
_L P
eI
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__4PL
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Extensionofunifcrm _ | cnBom?
Extensionof tape-ed B ¢ PL
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Strain:

When a single force or a system force acts on a body, it undergoes some deformation. This
deformation per unit length is known as strain. Mathematically strain may be defined as
deformation per unit length.

So,

Strain=Elongation/Original length

ol
Or, U

Elasticity;

The property of material by virtue of which it returns to its original shape and size upon
removal of load is known as elasticity.

Hooks Law

It states that within elastic limit stress is proportional to strain. Mathematically

Stress

E:
Strain

Where E = Young’s Modulus

15



Hooks law holds good equally for tension and compression.

Poisson’s Ratio:

The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson’s

ratio. Symbol used for poisson’s ratio is [J or 1/ m .

Modulus of Elasticity (or Young’s Modulus)

Young’s modulus is defined as the ratio of stress to strain within elastic limit.

Deformation of a body due to load acting on it

Stress
We know that young’s modulus E= ,
Strain

P
Or, strain, [ 01 [ ___
E AE
01
Now, strain, [] []
1
PI
So, deformation 10
AE
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Shear Strain

The distortion produced by shear stress on an element or rectangular block is shown in the
figure. The shear strain or ‘slide’ is expressed by angle ¢ and it can be defined as the change

in the right angle. It is measured in radians and is dimensionless in nature.

UV //

Modulus of Rigidity

For elastic materials it is found that shear stress is proportional to the shear strain within

elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ or ‘C’.

shear stress

G= —  _1]
N/mm? shear strain [J[J

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric strain.

It is denoted by the symbol K.

stress intensity [/ []
K[ 0—
volumetric strain [y

Relation between elastic constants:

Elastic constants: These are the relations which determine the deformations produced by a

given stress system acting on a particular material. These factors are constant within elastic
limit, and known as modulus of elasticity E, modulus of rigidity G, Bulk modulus K and
Poisson’s ratio L.

Relationship between modulus of elasticity (E) and bulk modulus (K):

17



E 013K (10 20))

Relationship between modulus of elasticity (E) and modulus of rigidity (G):

E [12G(10 1)

Relation among three elastic constants:

9KG

3K
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Stress — Strain Relationship

Stress — strain diagram for mild steel

Standard specimen are used for the tension test.

There are two types of standard specimen's which are generally used for this purpose, which

have been shown below:

Specimen I:

This specimen utilizes a circular X-section.

[specimen with circular X-section]

Specimen II:

This specimen utilizes a rectangular X-section.

\\\"-\-._
g

[specimen with rectangular X-section]

l; = gauge length i.e. length of the specimen on which we want to determine the mechanical
properties. The uniaxial tension test is carried out on tensile testing machine and the following
steps are performed to conduct this test.

(i) The ends of the specimen are secured in the grips of the testing machine.
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(i1) There is a unit for applying a load to the specimen with a hydraulic or mechanical drive.

(ii1) There must be some recording device by which you should be able to measure the final
output in the form of Load or stress. So the testing machines are often equipped with the
pendulum type lever, pressure gauge and hydraulic capsule and the stress Vs strain

diagram is plotted which has the following shape.

A typical tensile test curve for the mild steel has been shown below

O—A

PARTIALLY PLASTIC | /
e T sess
—Z strain diagram
Yield 55
stress ™\ B|C J : .
conventional stress-strain
A , D diagram or nominal stress-
@ : strain diagram
&/
2 : rupture strength
: (it is the stress at
| failure)
1
0'ﬁ< stain —> €

Linear range

SALIENT POINTS OF THE GRAPH:

(A) So it is evident form the graph that the strain is proportional to strain or elongation is
proportional to the load giving a st.line relationship. This law of proportionality is valid upto
a point A.

or we can say that point A is some ultimate point when the linear nature of the graph ceases
or there is a deviation from the linear nature. This point is known as the limit of
proportionality or the proportionality limit.

(B) For a short period beyond the point A, the material may still be elastic in the sense that
the deformations are completely recovered when the load is removed. The limiting point B is
termed as Elastic Limit .

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally
recoverable. There will be thus permanent deformation or permanent set

when load is removed. These two points are termed as upper and lower yield points

respectively. The stress at the yield point is called the yield strength.
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A study a stress — strain diagrams shows that the yield point is so near the proportional limit
that for most purpose the two may be taken as one. However, it is much easier to locate the
former. For material which do not posses a well define yield points, In order to find the yield
point or yield strength, an offset method is applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagram by
off setting this by an amount equal to 0.2% of the strain as shown as below and this happens

especially for the low carbon steel.

L3
a

yield strength (or Proof stress)

0.2 % or .002 =

(E) A further increase in the load will cause marked deformation in the whole volume of
the metal. The maximum load which the specimen can with stand without failure is called the
load at the ultimate strength.

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material.

su = Stress which the specimen can with stand without failure & is known as Ultimate Strength
or Tensile Strength.

su is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until
fracture occurs at F. Beyond point E, the cross-sectional area of the specimen begins to reduce
rapidly over a relatively small length of bar and the bar is said to form a neck. This necking

takes place whilst the load reduces, and fracture of the bar finally occurs at point F.

Nominal stress — Strain OR Conventional Stress — Strain diagrams: Stresses are usually
computed on the basis of the original area of the specimen; such stresses are often
referred to as conventional or nominal stresses.

True stress — Strain Diagram:
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Since when a material is subjected to a uniaxial load, some contraction or expansion always
takes place. Thus, dividing the applied force by the corresponding actual area of the specimen
at the same instant gives the so called true stress.

Percentage Elongation: 'd ":

The ductility of a material in tension can be characterized by its elongation and by the
reduction in area at the cross section where fracture occurs.
It is the ratio of the extension in length of the specimen after fracture to its initial gauge length,

expressed in percentage.
M- lg]

h

11 = gauge length of specimen after fracture(or the distance between the gage marks at fracture)
1= gauge length before fracture(i.e. initial gauge length)
For 50 mm gage length, steel may here a % elongation d of the order of 10% to 40%.

Ductile and Brittle Materials:

Based on this behaviour, the materials may be classified as ductile or brittle materials

Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the materials
over the plastic range is considerably in excess of that associated with elastic loading. The
Capacity of materials to allow these large deformations or large extensions without failure is
termed as ductility. The materials with high ductility are termed as ductile materials.

Brittle Materials:
A brittle material is one which exhibits a relatively small extensions or deformations to

fracture, so that the partially plastic region of the tensile test graph is much reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or concrete.
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Mechanical Properties of material:

Elasticity: Property of material by virtue of which it can regain its shape after removal of

external load

Plasticity: Property of material by virtue of which, it will be in a state of permanent

deformation even after removal of external load.
Ductility: Property of material by virtue of which, the material can be drawn into wires.

Hardness: Property of material by virtue of which the material will offer resistance to

penetration or indentation.

Ball indentation Tests:
1This method consists in pressing a hardened steel ball under a constant load P into a

specially prepared flat surface on the test specimen as indicated in the figures below :

yF

f<::?\ : d .

d
After removing the load an indentation remains on the surface of the test specimen. If
area of the spherical surface in the indentation is denoted as F sq. mm.
Brinell Hardness number is defined as :
BHN=P/F
F is expressed in terms of D and d D =
ball diameter

d = diametric of indentation and Brinell Hardness number is given by

[] 2P

BHN [

ODMDY D> 1d?
)

Then is there is also Vicker's Hardness Number in which the ball is of conical shape.

IMPACT STRENGTH
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Static tension tests of the unnotched specimen's do not always reveal the susceptibility
of metal to brittle fracture. This important factor is determined in impact tests. In impact tests

we use the notched specimen's

PN

this specimen is placed on its supports on anvil so that blow of the striker is opposite to
the notch the impact strength is defined as the energy A, required to rupture the specimen,
Impact Strength=A / f

Where f = It is the cross — section area of the specimen in cm? at fracture & obviously
at notch.

The impact strength is a complex characteristic which takes into account both toughness
and strength of a material. The main purpose of notched — bar tests is to study the
simultaneous effect of stress concentration and high velocity load application

Impact test are of the severest type and facilitate brittle friction. Impact strength values
can not be as yet be used for design calculations but these tests as rule provided for in
specifications for carbon & alloy steels.Futher, it may be noted that in impact tests fracture
may be either brittle or ductile. In the case of brittle fracture, fracture occurs by separation
and is not accompanied by noticeable plastic deformation as occurs in the case of ductile

fracture.

Impact loads:

Considering a weight falling from a height h, on to a collar attached at the end as shown in

the figure.

Let P= equivalent static or gradually applied load which will produce the same extension x

as that of the impact load W

Neglecting loss of energy due to impact, we can have:

Loss of potential energy= gain of strain energy of the bar
1

W(hx)[_Px
2

P1
Now we have extension x = ___
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AE

Substituting the value of x in the above equation we have:

W (hT 1 PL) 1 (PY )
AE 2 /::E

Solving the above equation we can have the following relation:
P W14 10 2hAE W1]

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W,

i.e. the stress produced by a suddenly applied load is twice that of the static stress.

Numerical examples:

1. Referring to the following figure let a mass of 100 kg fall 4cm on to a collar attached to a
bar of steel 2cm diameter, 3m long. Find the maximum stress set up.

Take E= 205,000 N/mm?.

Applying the relation:

ook
A
WM 2hAEWI]/ A

. 981 :;1] 10 2 140 U100 C 203, 000 -
w&;: 9810301000 Bl

" 134 M/mm”

Compound bar: In certain application it is necessary to use a combination of elements
or bars made from different materials, each material performing a different function. In over
head electric cables or Transmission Lines for example it is often convenient to carry the
current in a set of copper wires surrounding steel wires. The later being designed to support
the weight of the cable over large spans. Such a combination of materials is generally termed
compound bars.
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Consider therefore, a compound bar consisting of n members, each having a different
length and cross sectional area and each being of a different material. Let all member have a
common extension ‘x' i.e. the load is positioned to produce the same extension in each

member.

L S =
’ L -yl ’//l
\///I //[
n"member
. / Length Ln
First member " Area  An
Modulus En
Length L1 Load Fn
Area A1
Modulus E1 | | |,
P, B T S RGN N A ATV, TR PN S I Common
extension
W
Forthe’'n’ the merrbers
F ./
stress _ E = ;’ N
strain " xn/ﬁ
Rl
Ay,
or F = EnAntn _ Enfn )
L, L,

Where F, is the force in the nth member and A, and L, are its cross - sectional area and

length.

Let W be the total load, the total load carried will be the sum of all loads for all the

members.

E_ A
W=3 TN
L,
-,
- xzZath )
L,
Fromequalion 1) fcreeinmembert isgiven as
F = EyAy
fram erqnatinn (2)
Wy
}{ -
'S'EI‘I&
.
ThusF, = By W
|1 E En An
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Therefore, each member carries a portion of the total load W proportional of EA / L
value.

E, A
L
Fr=——t W
" IEA
The above expression may be writen as -
- _EBA
5= 174 REN
>EA

if the length of each individual member in same then, we may write

Thus, the stress in member '1' may be determined as <1 =F;/ A

Determination of common extension of compound bars: In order to determine the
common extension of a compound bar it is convenient to consider it as a single bar of an
imaginary material with an equivalent or combined modulus Ec.

Assumption: Here it is necessary to assume that both the extension and original lengths
of the individual members of the compound bar are the same, the strains in all members will
than be equal.

Total load on compound bar = F; + Fo+ Fz +......... + F, where F1 ,

F »,.....etc are the loads in members 1,2 etc

But force = stress . area,therefore

Where [ is the stress in the equivalent single bar
Dividing throughout by the common strain<<.
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2 Un

Uq
Ag+A.+  +A Y= A + 2 A+ L
(A + Az n) e la” =

e E (A + A+ +A)=EA +EA, + E A
BB EA  EVA

o

m

or Ec' Al“ﬁ‘z*“““ﬁr
2EA
E. ==—
= SA
wilh an exernal load W applied stress in th2 equivzlent barmay be computed as
stress zﬂ
zA
- . X Wy
t th ent har=—=———
strain inthe equivalent bar = SAE.
hence commen exension x = WL
" E.ZA

Compound bars subjected to Temp. Change : Ordinary materials expand when heated
and contract when cooled, hence , an increase in temperature produce a positive thermal
strain. Thermal strains usually are reversible in a sense that the member returns to its original
shape when the temperature return to its original value. However, there here are some
materials which do not behave in this manner. These metals differs from ordinary materials
in a sence that the strains are related non linearly to temperature and some times are
irreversible .when a material is subjected to a change in temp. is a length will change by an

amount.

Ui=0 L.t

OI' Dt:E.D 1

3 _————
\

2

—— T ——— T

[] = coefficient of linear expansion for the material L =

original Length
t = temp. change

Thus an increase in temperature produces an increase in length and a decrease in
temperature results in a decrease in length except in very special cases of materials with zero
or negative coefficients of expansion which need not to be considered here.

If however, the free expansion of the material is prevented by some external force, then
a stress is set up in the material. They stress is equal in magnitude to that which would be
29



produced in the bar by initially allowing the bar to its free length and then applying sufficient
force to return the bar to its original length.

Change in Length=[J L t
Therefore, strain= ] Lt/ L
=t

Therefore, the stress generated in the material by the application of sufficient force to
remove this strain

=strain X E
or Stress=E [J t

Consider now a compound bar constructed from two different materials rigidly joined
together, for simplicity.

Let us consider that the materials in this case are steel and brass.

Steel

Brass

v

If we have both applied stresses and a temp. change, thermal strains may be added to
those given by generalized hook's law equation —e.g.

Ex:%[gx_ﬁgy+ﬂzj]+0‘m
Ef%[ay—){ax +02]|]+oc.-'l-.t

Ef%[az —*,{crx+o,_,j]+ocﬂ-.t

While the normal strains a body are affected by changes in temperatures, shear strains
are not. Because if the temp. of any block or element changes, then its size changes not its
shape therefore shear strains do not change.
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In general, the coefficients of expansion of the two materials forming the compound bar
will be different so that as the temp. rises each material will attempt to expand by different
amounts. Figure below shows the positions to which the
individual materials will expand if they are completely free to expand (i.e not joined rigidly
together as a compound bar). The extension of any Length L is given by [J L t

Assume O, = L,

(a) Ongmal bar Steel
N Brass
3 Steed
A O L.t
L -
oL
e
N
{b} Expanded position members Steel I B c
free to expand mrepently N Brass |
3 Steel |
s Gl Compression

steel
of brass

PP

{¢) Expanded position of the Steel
Compound bar Brass
3 Stesl

In general, changes in lengths due to thermal strains may be calculated form equation
[J¢ = [ Lt, provided that the members are able to expand or contract freely, a situation that
exists in statically determinates structures. As a consequence no stresses are generated in a
statically determinate structure when one or more members undergo a uniform temperature
change. If in a structure (or a compound bar), the free expansion or contraction is not allowed
then the member becomes s statically indeterminate, which is just being discussed as an
example of the compound bar and thermal stresses would be generated.

If the two materials are now rigidly joined as a compound bar and subjected to the same
temp. rise, each materials will attempt to expand to its free length position but each will be
affected by the movement of the other. The higher coefficient of expansion material (brass)
will therefore, seek to pull the steel up to its free length position and conversely, the lower
coefficient of expansion martial (steel) will try to hold the brass back. In practice a
compromised is reached, the compound bar extending to the position shown in fig (c),
resulting in an effective compression of the brass from its free length position and an effective
extension of steel from its free length position.

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or pure

shear stress. In many instances, however both direct and shear stresses acts and the resultant
stress across any section will be neither normal nor tangential to the plane. A plane stse of
stress is a 2 dimensional stae of stress in a sense that the stress components in one direction
are all zero i.e
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O,=0yw=0x=0
Examples of plane state of stress include plates and shells. Consider the general case

of a bar under direct load F giving rise to a stress [] y vertically

Thickness of the
element in z-dir is thin
\\\ and is taken unity.

unit depth

The stress acting at a point is represented by the stresses acting on the faces of the element
enclosing the point. The stresses change with the inclination of the planes passing through
that point i.e. the stress on the faces of the element vary as the angular position of the element
changes. Let the block be of unit depth now considering the equilibrium of forces on the
triangle portion ABC. Resolving forces perpendicular to BC, gives [1; .BC.1 = [J y sin[] .
AB.1 but AB/BC =sinlJ or AB=BC sin[ ][]

Substituting this value in the above equation, we get
[17.BC.1=0ysin .BCsinJ.1or [+ ysin*200 (D

Now resolving the forces parallel to BC
[1y.BC.1=0ycos [J.ABsin. 1 again
AB =BC cos LI[]

[Jy.BC.1=0ycos [].BCsin [1.1or[J_ =[]ysinl] cos[][]

1 |
04 0 _.00sin200 )

y

2
If [J = 90° the BC will be parallel to AB and [17 = 0, i.e. there will be only direct stress or

normal stress.
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By examining the equations (1) and (2), the following conclusions may be drawn (i) The

value of direct stress [1:1[Jis maximum and is equal to [] y when v=90°.

(ii) The shear stress [1[Jhas a maximum value of 0.5 [J y when [] = 45°

Material subjected to pure shear:

Consider the element shown to which shear stresses have been applied to the sides AB

and DC

Ty 4] Tyx

Complementary shear stresses of equal value but of opposite effect are then set up on
the sides AD and BC in order to prevent the rotation of the element. Since the applied and

complementary shear stresses are of equal value on the x and y

planes. Therefore, they are both represented by the symbol L[] yy.
Now consider the equilibrium of portion of PBC

Assuming unit depth and resolving normal to PC or in the direction of [ ][]
(15 .PC.1 =[] y .PB.cosl] .1+[] xy .BC.sinl] .1

=[] xy .PB.cosl] + [] y .BC.sin[J[J
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Now writing PB and BC in terms of PC so that it cancels out from the two sides PB/PC =
sin[] BC/PC = cos[][]

L1 . PC.1 =Ll xy .cosl] sin[] PC+L] yy .cosl] .sinl] .PC
=20 xy sinlJ cos[J[]

Or, U 1120 xy sin 2011
(M

Now resolving forces parallel to PC or in the direction of [+ [].then [] xy PC.1

= [l xy. PBsinlJ -[J yy BC cos[] L]

-ve sign has been put because this component is in the same direction as that of [, .

again converting the various quantities in terms of PC we have
[ xyPC. 1 =[] xy. PB.sin? [] [] xy-[] xy PCcos?[1[]

=-[] xy[cos*[] - sin®[] ]

=-[] xy cos2L] (2) the negative sign means that the sense of [ ], is opposite to that of
assumed one. Let us examine the equations (1) and (2) respectively

From equation (1) i.e,

0 =0 ysin200

The equation (1) represents that the maximum value of [1|, is [J xy when [J = 45° Let us take
into consideration the equation (2) which states that

[ =- [ xycos2[IL]

It indicates that the maximum value of [ is [J xy when [J = 0° or 90°. it has a value zero
when [ = 45°,

From equation (1) it may be noticed that the normal component < < has maximum and
minimum values of +< 4y (tension) and << x,(compression) on plane at + 45° to the applied

shear and on these planes the tangential component < < is zero. Hence the system of pure
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shear stresses produces and equivalent direct stress system, one set compressive and one

tensile each located at 45° to the original shear directions as depicted in the figure below:

Try

Material subjected to two mutually perpendicular direct stresses: Now consider a

rectangular element of unit depth, subjected to a system of two direct stresses both

tensile, < x and < yacting right angles to each other.

oy \\1
A HHJF'ut depth '@j\ B . (D' s
B ‘] :
To
. A T
[A3
0 ) To
l c [a1i] C
Ty
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for equilibrium of the portion ABC, resolving perpendicular to AC
. AC.1=0ysinJ.AB.1 + [lxcos [J.BC.1

converting AB and BC in terms of AC so that AC cancels out from the sides
O =0 sing? 0+ cosx 200

Futher, recalling that cos?[] - sin?[] = cos2J or (1 - cos2[] )/2 = sin?[J
Similarly (1 + cos2[] )/2 = cos’q

Hence by these transformations the expression for < < reduces to
=1/2<y (1 <cos2<) + 1/2<x (1 + cos2<)

On rearranging the various terms we get

" .
Ty = [axquy] +[J"c zg”r]msEE

(3) Now resolving parallal

to AC
8q-AC.1= << yy..c08< .AB.1+<< 4y.BC.sin< .1
The — ve sign appears because this component is in the same direction as that of AC.
Again converting the various quantities in terms of AC so that the AC cancels out from
the two sides.
Tg-ALT = |1,costtsnt - 0 sinticosd |AL
T = [0y -0, sinfcosd

a. - ad
(o ‘*‘:'sinza

S

(o, - 0y)

ar |1, = 12 ¥ in28

(4) Conclusions :
The following conclusions may be drawn from equation (3) and (4)
(1) The maximum direct stress would be equal to < or <y which ever is the greater,
when <= 0° or 90°
(i1) The maximum shear stress in the plane of the applied stresses occurs when <<
=45°

(7, = 7]
Tmaw = 12 !
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Material subjected to combined direct and shear stresses:

Now consider a complex stress system shown below, acting on an element of material.
The stresses < x and <y may be compressive or tensile and may be the result of direct
forces or as a result of bending.The shear stresses may be as shown or completely reversed

and occur as a result of either shear force or torsion as shown in the figure below:

A

Ty
R Ty
A B
% P Tuy
f Ox
an
T
D «——+— C
Thi
¥y Ty

As per the double subscript notation the shear stress on the face BC should be notified
as < yx , however, we have already seen that for a pair of shear stresses there is a set of
complementary shear stresses generated such that < yx = <,y

By looking at this state of stress, it may be observed that this state of stress is
combination of two different cases:

(1) Material subjected to pure stae of stress shear. In this case the various formulas
deserved are as follows

<< =<yxsin2<<

<< =<<<yx COS <<

(i1) Material subjected to two mutually perpendicular direct stresses. In this case the

various formula's derived are as follows.
: (T, +7,) . (o, -a,)
B 2

J, =
Tq =—|: 12 1’rjlairﬂt?

cCs2f

To get the required equations for the case under consideration,let us add the respective

equations for the above two cases such that

_ (ox +oy:| . (ax - ay)

8- 2 2
a, — 7T
ry = %ﬁr&? ~ TyyCc 520

cos26+ Tey sin 28
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These are the equilibrium equations for stresses at a point. They do not depend on

material proportions and are equally valid for elastic and inelastic behaviour
This eqn gives two values of 2< that differ by 180° .Hence the planes on which

maximum and minimum normal stresses occurate 90%apart.

. . do
For g, to be a maximum or ninimum d—; =0

Mow
a, +0 g, -0
gB:( "2 sr)*( ”2 VIIcasEE*- Ty 5iN 28
% - -15(.;;‘ -a,)sin282 + 1, cos26.2

=0
i~ (g, - ¢, )sin28+ 7, c0262=0

ToC05282 = (0, - 0,]sin2d

27
Thus, tan28 = — ¥
('Jx - Ug.r:l

From the triangle it may be determined

[ )
cos2d = 2y - v
\[(crx -0, 4t
2T
sin28 = i

Jl:':rx - U\,r:li + "11111;

21 Xy

(ox- oy)

Substituting the values of cos2<< and sin2<< in equation (5) we get
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a.+d Jg. -da
_logroy) o v)m;aa,n sin 7

" 3 3 y
N L N A B )
? ? <.((u,t - uyjz 1-412,:,’,
. Ty 2Ty
,,J(ul - uy]“' +4'J?r
_(oxroy) 1 (0x-0y)
Tz 7 J(o -0t + AT,
L 412
Q,J(o - 0, +412
or

_loerey) 1 (o -0 4T,
2 2-\[ljo -0,) j:+1111

- Lo -0 ]+1 Jox -7, +42 flox-0,)" 147,
2 V[I:ﬂ —rI]|2+a'l*r2

Ty ;(a o)t - ,J(o -d, +1112

Hence we get the twu values of cra,whn:h are designated o, as 7, ard respectively therefore
7y = 1(0 +g )+—J(o - €y +4'r

dq, = J(o -d, +4F
The 01 anc o, are termed asthe principle siresses of the systemn.

Substituting the values of cos28 and sin28 in equaticn (B) we see that

Ty = %(ox - o )sinit - 1, cos2y

l( o) 27y i Ty (0% = 0]
2 oo eaty flo-oFead,
0

This shows that the values oshear stress is zero on the principal planes.

Hence the maximum and minimum values of normal stresses occur on planes of zero
shearing stress. The maximum and minimum normal stresses are called the principal stresses,
and the planes on which they act are called principal plane the solution of equation

AT

tan28, = =
(o ay:'

will yield two values of 2< separated by 180 i.e. two values of < separated by 90° .Thus

the two principal stresses occur on mutually perpendicular planes termed principal planes.
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Therefore the two — dimensional complex stress system can now be reduced to the

equivalent system of principal stresses.

4R Ref
Principle planes o
\ -ve
a,
—_—t> Ty
Try +ve
O«
-—

'
Let us recall that for the case of a material subjected to direct stresses the value of

maximum shear stresses

T - %I::TI -oJat 8= 48" Thus, for a 2-dimensional state of stress,sabjectec to principle stresses
_1 I .

A 5(31 - @) on substituting the valuesif o and o, we get
-1 2

Tmax™ = EWJ{EUI U‘.") * 412"!‘

Aliernatively this expressicn can also be obtained by differentiating the expression for 7, with respect to & ie.

O,-0
T, = %sin?ﬁ - T L0528
dd%'; = —%:ax - 0,lcos26.2+ 7, 5in26.2
=0

or(o, -o,)cos2f +2r, sin26=0

_ ('Jy - UI) _ (Ux - ay)
tan2é; = = ==
xy xy
T, =0,
tan2é; = -M
2Ty,
Recalling that
27
tan20p = ——
[:j:: - oy)
Thus,

ltan28p tan28, = 1|
Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation

(1) hence the roots for the double angle of equation (2) are 90° away from the corresponding

angle of equation (1).
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This means that the angles that angles that locate the plane of maximum or minimum
shearing stresses form angles of 45° with the planes of principal stresses.

Futher, by making the triangle we get

ccs2é = =
’J:GY Tt AT,
-(o, -0
sin28 = (9 ~9y)

\,ﬁ[aY -0, ) +47,,
Therefore by substiutingthevaluesof cos2fand sin2dwe have
Te = 5(0, - 0,)sin26- 71, c1528

(o, —0,)(o. -0yl ) Ty 2Ty

a .\(I(UY - a,]z + 413!_, J(cry— c:r,,(j2 “1121,;
1 (ey- c:r)cjl2 *4’21-,;

2 Jo, -0 +ar,

Ty = 115-\1{(% - UY:II + 41‘2w

M= P =

= (Ox- G!)

Because of root the difference in sign convention arises from the point of view of
locating the planes on which shear stress act. From physical point of view these sign have no
meaning.

The largest stress regard less of sign is always know as maximum shear stress.

Principal plane inclination in terms of associated principal stress:
tan28 = i

We know that the equation 7% 7o)

yields two values of q i.e. the inclination of the two principal planes on which the
principal stresses s1 and sz act. It is uncertain,however, which stress acts on which plane unless

equation.

(0,+0,) (0, -7,)
2 2

g — LUs 28+, Ein2E
is used and observing which one of the

two principal stresses is obtained.
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Alternatively we can also find the answer to this problem in the following manner

it depth
- /é/um ep

i —
~ B,
=0\ i
| t o el | o
optosl a
o N
N P
Oa Or Gp ,/
(01.02) ¢

Consider once again the equilibrium of a triangular block of material of unit depth,
Assuming AC to be a principal plane on which principal stresses < acts, and the shear stress
is zero.

Resolving the forces horizontally we get:

<x.BC.1+<, .AB.1=<,.cos<.AC dividing the above equation through by BC

we get
Lo BB g AL
0. TWE —UP.CUS E
.y
dy + T dand = oy
Thus

-and - %o " 9x
T
GRAPHICAL SOLUTION — MOHR'S STRESS CIRCLE

The transformation equations for plane stress can be represented in a graphical form

known as Mohr's circle. This grapical representation is very useful in depending the
relationships between normal and shear stresses acting on any inclined plane at a point in a

stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in the figure

b
L {j:,
Tay
A B
o P ':Ar
g O
[ 77}
D =—+—— C
y Oy
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The above system represents a complete stress system for any condition of applied load
in two dimensions

The Mohr's stress circle is used to find out graphically the direct stress < and sheer
stress<< on any plane inclined at < to the plane on which < x acts.The direction of < here is
taken in anticlockwise direction from the BC.

STEPS:

In order to do achieve the desired objective we proceed in the following manner (i)

Label the Block ABCD.

(i1) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate)

(iii))  Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign
convention.

Direct stresses<< tensile positive; compressive, negative

Shear stresses — tending to turn block clockwise, positive

— tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the element is
clockwise |

This gives two points on the graph which may than be labeled as ME and 3C

respectively to denote stresses on these planes.
(iv) Join &8 and BC.
v) The point P where this line cuts the s axis is than the centre of Mohr's
stress circle and the line joining 4B and BC is diameter. Therefore the circle can now be
drawn.

Now every point on the circle then represents a state of stress on some plane through C.
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Consider any point Q on the circumference of the circle, such that PQ makes an angle

2<< with BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents

the resultant stress on the plane an angle < to BC. Here we have assumed that < x <<<y

Now let us find out the coordinates of point Q. These are ON and QN.

From the figure drawn earlier
ON=0OP +PN
OP =0OK + KP

OP =<y + 172 (<x<<<y)
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=<y/2+<y/2+<x/2+<y/2=(
<xFt<y)/2
PN = Rcos( 2<<<<<) hence ON
=QOP + PN
=(<x*+<y)/2+Reos(2<<<<<<)
=(<<x+<y)/2+ Rcos2< cos< + Rsin2< sin< now
make the substitutions for Rcos< and Rsin<.

Reoosd = Px 9y

Rsin=1,
Thus,
ON =12 (<K <x+<y)+ 1/2 (<< x <<y )e082< + < xysin2<< Similarly (1)
QM = Rsin( 2<<<<<)
= Rsin2< cos< - Rcos2< sin<
Thus, substituting the values of R cos< and Rsin<, we get

QM = 1/2 (< x < <y)sin2< <<< 4,€082< (2)
If we examine the equation (1) and (2), we see that this is the same equation which we

have already derived analytically
Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at <

to BC in the original stress system.

N.B: Since angle —Pdols 2< on Mohr's circle and not < it becomes obvious that angles
are doubled on Mohr's circle. This is the only difference, however, as They are measured in
the same direction and from the same plane in both figures.

Further points to be noted are :
(1) The direct stress is maximum when Q is at M and at this point obviously the

sheer stress is zero, hence by definition OM is the length representing the maximum principal
stresses < 1 and 2< | gives the angle of the plane < from BC. Similar OL is the other principal
stress and is represented by <>

(2) The maximum shear stress is given by the highest point on the circle and is
represented by the radius of the circle.

This follows that since shear stresses and complimentary sheer stresses have the same
value; therefore the centre of the circle will always lie on the s axis midway between < x and
<y .[since +< xy & <<y are shear stress & complimentary shear stress so they are same in

magnitude but different in sign. ]
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3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's

stress circle would be
(o, -ad,)
2
While the direct stress on the plane of maximum shear must be mid — may between < x
and <yi.e

{oy + oy

2

Y

(.'WG

\ "',"'

\ ke /
N\

“ i

P uv)\"ﬁ/ BC

2

4) As already defined the principal planes are the planes on which the shear
components are zero.
Therefore are conclude that on principal plane the sheer stress is zero.
(5) Since the resultant of two stress at 90° can be found from the parallogram of
vectors as shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by

OQ on Mohr's Circle.

(6) The graphical method of solution for a complex stress problems using Mohr's
circle is a very powerful technique, since all the information relating to any plane within the
stressed element is contained in the single construction. It thus, provides a convenient and
rapid means of solution. Which is less prone to arithmetical errors and is highly

recommended.
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Numericals:
Let us discuss few representative problems dealing with complex state of stress to be solved
either analytically or graphically.
Q 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the Value
of shear stress on the planes on which the normal stress has a value of 50 MN/m? tensile.
Solution:
Tensile stress <,=F / A =105 x 10° / <x (0.02)?
= 83.55 MN/m?
Now the normal stress on an oblige plane is given by the relation
< cee =< ysin’<
50 x 10° = 83.55 MN/m? x 10%sin’<
<=50%8'
The shear stress on the oblique plane is then given by
<<« =1/2 <ysin2<
=1/2x 83.55x 10° x sin 101.36
= 40.96 MN/m?
Therefore the required shear stress is 40.96 MN/m?* Q2:

For a given loading conditions the state of stress in the wall of a cylinder is expressed as

follows:
(a) 85 MN/m? tensile
(b) 25 MN/m? tensile at right angles to (a)
(c) Shear stresses of 60 MN/m? on the planes on which the stresses (a) and

(b) act; the sheer couple acting on planes carrying the 25 MN/m? stress is clockwise in

effect.

Calculate the principal stresses and the planes on which they act. What would be the
effect on these results if owing to a change of loading (a) becomes compressive while stresses
(b) and (c) remain unchanged Solution:

The problem may be attempted both analytically as well as graphically. Let us first

obtain the analytical solution
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¥
The principle stresses are given by the formula

gyanda,

(0,+0,) :%J{a, o +ar,

b — bJ| —

(B5 +25) + ; JB5 + 28)% + (43607}

1

=55+ — B0+f5 =55 +57

= 0, =122 MN/m’

|

gy = =12 MN/m? (compressive)

For finding out the planes on which the principle stresses act us the

27
tan28=[ il ]
7, -0

¥y

equation

The solution  of  this equation  will yeild two values <i.e
they < and <, giving < = 31°71' & <= 121°71'
(b) In this case only the loading (a) is changed i.e. its direction had been changed. While

the other stresses remains unchanged hence now the block diagram becomes.

25 MN
m'{:
I 60 MN
m2
85 MN
m?

]

Again the principal stresses would be given by the equation.
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g, kay, = (0 oyt Vf(-:r -y H1'1'2

(-85 + £)+1Jc 85 - 26)% + (4x60%)

50)+1J 85 - 2577 + (42607
= -30 +_J121uu 14400

= =30 tEH A
gy =514 MN/m?; oy = -111.4 MN/m?
Again for finding out the angles use the following equation.

27
tan2&=[ il ]
g, -0,

_ 2¥bU
-85-25  -110

12

1

28 = tan[—%]

= f8=-2374"

I\Jl—x I\Jl—x

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e

principle planes may be depicted on the element as shown below:

" Ref.plane
oy B.C "“‘*-:
P G I
" Try L8 F] |
Ay i
W [}
\*\ — B!
\‘{__‘ e e

%

A

%

- C

L

So this is the direction of one principle plane & the principle stresses acting on this
would be < | when is acting normal to this plane, now the direction of other principal plane
would be 90° + < because the principal planes are the two mutually perpendicular plane, hence
rotate the another plane < + 90° in the same direction to get the another plane, now complete
the material element if < is negative that means we are measuring the angles in the opposite

direction to the reference plane BC .
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Therefore the direction of other principal planes would be {<<+ 90} since the angle <<
is always less in magnitude then 90 hence the quantity (<<<+ 90 ) would be positive therefore
the Inclination of other plane with reference plane would be positive therefore if just complete

the Block. It would appear as

Ref.plane

& |
)

If we just want to measure the angles from the reference plane, than rotate this block

through 180° so as to have the following appearance.

So whenever one of the angles comes negative to get the positive value, first Add
90° to the value and again add 90° as in this case < =< 23%74' so < =<23°74' +
90° = 66°26' .Again adding 90° also gives the direction of

other principle planes
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i.e<2=66"26'+90° = 156"26'

This is how we can show the angular position of these planes clearly.
GRAPHICAL SOLUTION:

Mohr's Circle solution: The same solution can be obtained using the graphical solution

i.e the Mohr's stress circle,for the first part, the block diagram becomes

L 25 MN
m* B0 MN
m?
A B
* 60 MN
\.\ m:|
“\{-- 85 MN
W ITI2
w
LY
D -——— G

§
Construct the graphical construction as per the steps given earlier.

N Y -
e

-
e .

- ot

Y

0 ‘\\ah—_/// BC

Taking the measurements from the Mohr's stress circle, the various quantities computed

are
<1 =120 MN/m? tensile
< =10 MN/m? compressive
<1 = 34° counter clockwise from BC
<5 =234+ 90 = 124° counter clockwise from BC

Part Second : The required configuration i.e the block diagram for this case is shown

along with the stress circle.
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By taking the measurements, the various quantites computed are given as

<1 =56.5 MN/m” tensile
<, =106 MN/m? compressive

<1 = 6615 counter clockwise from BC < »
= 156°15' counter clockwise from BC

Salient points of Moht's stress circle:

complementary shear stresses (on planes 90° apart on the circle) are equal in magnitude
The principal planes are orthogonal: points L and M are 180° apart on the circle (90° apart
in material)

There are no shear stresses on principal planes: point L and M lie on normal stress axis.
The planes of maximum shear are 45° from the principal points D and E are 90° , measured
round the circle from points L and M.

The maximum shear stresses are equal in magnitude and given by points D and E

The normal stresses on the planes of maximum shear stress are equal i.e. points D and E

both have normal stress co-ordinate which is equal to the two principal stresses.
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As we know that the circle represents all possible states of normal and shear stress on
any plane through a stresses point in a material. Further we have seen that the co-ordinates of
the point ‘Q' are seen to be the same as those derived from
equilibrium of the element. i.e. the normal and shear stress components on any plane passing
through the point can be found using Mohr's circle. Worthy of note:

1. The sides AB and BC of the element ABCD, which are 90° apart, are
represented on the circle by ZB P and BC P and they are 180° apart.

2. It has been shown that Mohr's circle represents all possible states at a point.
Thus, it can be seen at a point. Thus, it, can be seen that two planes LP and PM, 180° apart
on the diagram and therefore 90° apart in the material, on which shear stress < « is zero. These
planes are termed as principal planes and normal stresses acting on them are known as

principal stresses.

Thus ,<;=0L
<,=0M
3. The maximum shear stress in an element is given by the top and bottom points

of the circle i.e by points J; and J> ,Thus the maximum shear stress would be equal to the
radius of i.e. < max= 1/2(<< 1<<< 3 ),the corresponding normal stress is obviously the distance
OP = 1/2 (<< x*+ <y ), Further it can also be seen that the planes on which the shear stress is

maximum are situated 90° from the principal planes ( on circle ), and 45° in the material.
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4. The minimum normal stress is just as important as the maximum. The algebraic
minimum stress could have a magnitude greater than that of the maximum principal stress if
the state of stress were such that the centre of the circle is to the left of orgin.

ie. if  <;=20MN/m?(say)

<, =< 80 MN/m? (say)

Then < ma™ = (<1 <<<2/2) =50 MN/m?

If should be noted that the principal stresses are considered a maximum or minimum
mathematically e.g. a compressive or negative stress is less than a positive stress, irrespective
or numerical value.

5. Since the stresses on perpendular faces of any element are given by the co-
ordinates of two diametrically opposite points on the circle, thus, the sum of the two normal
stresses for any and all orientations of the element is constant, i.e. Thus sum is an invariant
for any particular state of stress.

Sum of the two normal stress components acting on mutually perpendicular planes at a

point in a state of plane stress is not affected by the orientation of these planes.

A

1
1 \\\
1 'u‘
:
. 28
: AN
\%

/
/

This can be also understand from the circle Since AB and BC are diametrically opposite
thus, what ever may be their orientation, they will always lie on the diametre or we can say

that their sum won't change, it can also be seen from analytical relations

= (Ox0p) 10 ¥ o528+ Ty SiN 28
We 2 2
know
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on plane BC; <=0

<1 =<4 on plane AB;

<=270°

<m=<y

Thus <p1 + <n=<xt+ <y

6. If <1 =<, the Mohr's stress circle degenerates into a point and no shearing
stresses are developed on xy plane.

7. If <+ <,=0, then the center of Mohr's circle coincides with the origin of

<<<<< co-ordinates.

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical
and hemispherical portion is different. While the internal diameter of both the portions is
assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.
b
o 7 T F T ¥ T T

WO b L Y

I

For the Cylindrical Portion

hoop or circurmferential stress= oy ‘t'here synities the cylindncal portion.
_ pd
)
lorgitudnal stress= o, ¢
_ pd
Ay

hoop or circumferential strein €, = % - y%: ﬁ—d:[E—y]
=

d
or 1, =1‘1F:1E[2 r,-']

For The Hemispherical Ends:




Because of the symmetry of the sphere the stresses set up owing to internal pressure will be
two mutually perpendicular hoops or circumferential stresses of equal values. Again the radial
stresses are neglected in comparison to the hoop stresses as with this cylinder having
thickness to diametre less than1:20.

Consider the equilibrium of the half — sphere
Force on half-sphere owing to internal pressure = pressure X projected Area
=p.<d*/4

Resisting torce = oy, . md.t,

2
p.%m:r,_, .mdt,

= 1y (fnrﬂphnrnj:%
2

. o
similarly the hoop grain _E[

Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and the
spherical ends to expand by a different amount under the action of internal pressure. So owing
to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a
different amount. This incompatibly of deformations causes a local bending and sheering
stresses in the neighborhood of the joint. Since there must be physical continuity between the
ends and the cylindrical portion, for this reason, properly curved ends must be used for
pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

LIRS D L DU R
== Ud Rl
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But for general steel works v = 0.3, therefore, the thickness ratios becomes

t2/t1=0.7/1.7 or
t1 L] 2.4t

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the
hemispheroid ends for no distortion of the junction to occur.

SUMMARY OF THE RESULTS : Let us summarise the derived results

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :

(i) Circumferential or loop stress

Ll n=pd/2t

(i1) Longitudinal or axial stress

[l L=pd/4t

Where d is the internal diametre and t is the wall thickness of the cylinder.
then

Longitudinal strain [J . =1/E [[J - [J [J H]

Hoop stain Ll y=1/E[ 0 u—vlL]

(B) Change of internal volume of cylinder under pressure

-Pdr5_yuv
HE

(C) Fro thin spheres circumferential or loop stress

=

p

o =—

H t

Thin rotating ring or cylinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure
p caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a
unit length of the circumference is

p=mo’r
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Fig 19.1: Thin ring rotating with constant angular velocity <
Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if
its own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area

F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant
across the wall thickness.

F = mass x acceleration=m @’ rxr

This tension is transmitted through the complete circumference and therefore is resisted by
the complete cross — sectional area.

hoop stress = F/A =m o’ r*/ A
Where A is the cross — sectional area of the ring.

Now with unit length assumed m/A is the mass of the material per unit volume, i.e.
the density <.

hoop stress [ = [ w® r?
Module2

Torsion of circular shafts
Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a
plane perpendicular to the axis of the bar such a shaft is said to be in torsion.
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Effects of Torsion: The effects of a torsional load applied to a bar are
(1) To impart an angular displacement of one end cross — section with respect to the other end.

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis.

Assumption:

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material.
(i) The material is elastic, follows Hook's law, with shear stress proportional to shear strain.
(iii) The stress does not exceed the elastic limit.
(iv) The circular section remains circular (v) Cross section remain plane.
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.
Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end being fixed Under the action
of this torque a radial line at the free end of the shaft twists through an angle [1 , point A moves to B, and AB subtends an
angle [ ' at the fixed end. This is then the angle of distortion of the shaft i.e the shear strain.
Since angle in radius = arc / Radius arc AB
=R
=L [J [since L and [ also constitute the arc AB]
Thus, [l=RI/L (1)
From the definition of Modulus of rigidity or Modulus of elasticity in shear

. shear stress(7)
shear strain(?y)

where y isthe shear stressset up atradius R,

.
Then —=

G ¥

: . R& 1
Equating the equations (1) and (2) we get — = 5
T

ﬁ= $[= TT]where 7'isth2 shear stress at any radus r.

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress ] [".

59



The force set up on each element

= stress x area

= [1'x 2[J r dr (approximately)

This force will produce a moment or torque about the center axis of the shaft.

=[".20rdr.r
=20 [.1%dr
H
T= _[Em'r dr
The total torque T on the section, will be the sum of all the contributions. v

Since [1' is a function of r, because it varies with radius so writing down[|[!' in terms of r from the equation (1).

ES

1
-2 2 e rle

now substituting R = d/2

T pr—
ld ™
[

ﬂ.d4
sirc:eﬁ = J thepclarmomentof inertia

T G

r___

J L

if we combine the equation no.(1) and (2} we get

Where

T = applied external Torque, which is constant over Length L;



J = Polar moment of Inertia

4
—ﬂ; Mur sulid shealt
32

_ m:D4 _ d4:|

22
[ D = Outside diameter ; d = inside diameter ] G = Modules of rigidity (or Modulus of

for a hollow shaft.

elasticity in shear) [1 =1t is the angle of twist in radians on a length L.
Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twisti.e, k=T /=

GJ/L

Power Transmitted by a shaft : If T is the applied Torque and [ is the angular velocity of the shaft, then the power transmitted
by the shaft is
2 AN
B0 G010
whaere N=rpm

I=Tuw

TORSION OF HOLLOW SHAFTS:

From the torsion of solid shafts of circular x — section , it is seen that only the material at the
outer surface of the shaft can be stressed to the limit assigned as an

allowable working stresses. All of the material within the shaft will work at a lower stress and
is not being used to full capacity. Thus, in these cases where the weight reduction is important,
it is advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same
assumptions will be made as in the case of a solid shaft. The general torsion equation as we

have applied in the case of torsion of solid shaft will hold good

T T .8
I T
For the hollow shaft
4 _ 44
J = % where Di=Outside diameter
i=Inside diametar
Let di=21ADﬂ
16T
Tmax™ |5u:-|id g 0
. T, /2
e lglow W 4 4
— D" -
7P 4
i 16T D,
0,* [1 - (4,/D, )“]
. 16T . =1.EIEB.1ET3 (@)
m0y” [1- (1/2) Dy
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Hence by examining the equation (1) and (2) it may be seen that the [] ma™ in the case of
hollow shaft is 6.6% larger than in the case of a solid shaft having the same outside diameter.
Reduction in weight:

Considering a solid and hollow shafts of the same length 'l' and density ' [J ' with d; =

1/2 Do
1/2 Do

__Jr_ .@_

Weight of hollow shaft
2 2
= ':HDTD - WI| Hp

4
??Dgz }"?'Dn2 i
4 16
0,2
= B 1 -1/4]Ix
TR
g
=075 —|
7 #o
. 7
Weight of salid shaft :“::1” 1o
. - a0,y
Reducton inweght =(1-0.74) 1 1%p
:'IDE
=020 |
2 Ho

Hence the reduction in weight would be just 25%.

Illustrative Examples : Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally applied
torque. To at the shoulder as shown in the figure. Determine the angle of rotation [y of the

shoulder section where Ty is applied ?
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Concept of Shear Force and Bending moment in beams:
When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are

helpful to analyze the beams further. Let us define these terms

Por

by Er
A A
R (a} Rz
P =5} A Pa
i
E I
] | |
75T | | s el
A : A
i
b : Rz
b A

Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P,

P, Pz and is simply supported at two points creating the reactions R;and Ro
respectively. Now let us assume that the beam is to divided into or imagined to be cut into
two portions at a section AA. Now let us assume that the resultant of loads and reactions to
the left of AA is ‘F' vertically upwards, and since the entire beam is to remain in equilibrium,
thus the resultant of forces to the right of AA must also be F, acting downwards. This forces
‘F' is as a shear force. The shearing force at any x- section of a beam represents the tendency
for the portion of the beam to one side of the section to slide or shear laterally relative to the

other portion.
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Therefore, now we are in a position to define the shear force ‘F' to as follows: At any x-
section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components of the
forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in figures

2 and 3.

F

The reszultant force which is in the downward
direction and is towards the R.H.5 of the
X-geclion is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.5 of the

A
|
|
|
|
|
|
|
|
|
|
-
|
|
i
|
|
|
|
|
|
I

X-seclion is +ve Shear Force !
l
A

Fig 2: Positive Shear Force

F

The resultant force which are in the downward
direction and is on the L.H.5 of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
|
|
|
|
|
|
|
|
|
|

| I
|
|
|
|
|
|
|
|
|
I
: X-seclion |5 -ve Shear Force.
A
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Fig 3: Negative Shear Force Bending

Moment:

P Pz Pa
TS FELeT
A A
R (a) Rz
P4 Pz A Pz
|
|
it ;f | h M
| I ! 1
: 1 -
77FA7N, : Al s 7
- | _—
i A
[
(=3 |
1 ! Ro
) A
Fig 4

Let us again consider the beam which is simply supported at the two prints, carrying loads P1,
P; and P3 and having the reactions Ry and R> at the supports Fig 4. Now, let us imagine that
the beam is cut into two potions at the x-section AA. In a similar manner, as done for the case
of shear force, if we say that the resultant moment about the section AA of all the loads and
reactions to the left of the x-section at AA is

M in C.W direction, then moment of forces to the right of x-section AA mustbe ‘M'in C.C.W.
Then ‘M’ is called as the Bending moment and is abbreviated as B.M. Now one can define

the bending moment to be simply as the algebraic sum of the moments about an x-section of

all the forces acting on either side of the section Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5

and Fig 6.
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Resultant moment on the R.H.5 postion
of the X-section is C.C.W, then it may be
considered as positive B.M

Resultant moment on the L.H.S of
the X-section is C.W, then it is a
positive B.M

i /' i \M

A

Fig 5: Positive Bending Moment

[

M

N

M

Resultant moment on the R.H.S of
the X-section is C.W, then itis a
negaltive B.M

Resultant moment on the L.H.S of
the X-section is C.C.W, thenitis a
negative B.M

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
A
Fig 6: Negative Bending Moment
Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative

bending moments respectively.
Bending Moment and Shear Force Diagrams:
The diagrams which illustrate the variations in B.M and S.F values along the length of the

beam for any fixed loading conditions would be helpful to analyze the beam further.
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ‘F'
varies along the length of beam. If x dentotes the length of the beam, then F is function x i.e.
F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal
bending moment ‘M' varies along the length of the beam. Again M is a function x i.e. M(X).
Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.
Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.
Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'

from the origin “0'.

0
BARNY
¥

sl
.

Considered to
he detached

Let us detach this portion of the beam and draw its free body diagram.

MHEM
I F+&F

The forces acting on the free body diagram of the detached portion of this loaded beam are

wflengm

(ONE

[
i

the following
* The shearing force F and F+ &F at the section x and x + 6x respectively.

* The bending moment at the sections x and x + 6x be M and M + dM respectively.
» Force due to external loading, if ‘w' is the mean rate of loading per unit length then the total

loading on this slice of length dx is w. 6x, which is approximately acting through the centre
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‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly through
the centre ‘c'.
This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point ‘c'. Such that

M+F 254 F +67). 2 = M+ oM
SF O Frar). 2 =am
2 2

= F,Z_}{ +F,52—}{ +6F.%= oM [Neglecting the product of

oF andéxbeinc smallquantities|
= F.6x= M
&M
G
Under the limits x— 0

chd
[=— 1
= (1)

Resolvingthe forcesverically we get
wi. i +(F +6F)=F

=F=

:w=—ﬁ
fi%
Under the limits 6x— 0
:w=—£ur—i[@]
dx dx "dx
dF _ d*M

Conclusions: From the above relations,the following important conclusions may be drawn

* From Equation (1), the area of the shear force diagram between any two points, from the
basic calculus is the bending moment diagram

r= J'F. oy

* The slope of bending moment diagram is the shear force, thus

F=2M
dx
Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is

therefore constant.'
M

— 0.
d

* The maximum or minimum Bending moment occurs where
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The slope of the shear force diagram is equal to the magnitude of the intensity of the
distributed loading at any position along the beam. The —ve sign is as a consequence of our

particular choice of sign conventions

Procedure for drawing shear force and bending moment diagram:

Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam as a
function of ‘x' measured from one end of the beam is that it becomes easier to determine the
maximum absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ‘x' becomes of paramount
importance so as to determine the value of deflection of beam subjected to a given loading.
Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to
draw this, first the reactions must be determined always. Then the vertical components of
forces and reactions are successively summed from the left end of the beam to preserve the
mathematical sign conventions adopted. The shear at a section is simply equal to the sum of
all the vertical forces to the left of the section.

When the successive summation process is used, the shear force diagram should end up with
the previously calculated shear (reaction at right end of the beam. No shear force acts through
the beam just beyond the last vertical force or reaction. If the shear force diagram closes in
this fashion, then it gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of
beam from the left hand end and summing up the areas of shear force diagrams giving due
regard to sign. The process of obtaining the moment diagram from the shear force diagram
by summation is exactly the same as that for drawing shear force diagram from load diagram.
It may also be observed that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists along a
certain portion of a beam, then it indicates that there is no change in moment takes place. It
may also further observe that dm/dx= F therefore, from the fundamental theorem of calculus
the maximum or minimum moment occurs where the shear is zero. In order to check the

validity of the bending moment diagram, the terminal conditions for the moment must be
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satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is
built in, the moment computed by the summation must be equal to the one calculated initially
for the reaction. These conditions must always be satisfied.

[lustrative problems:

In the following sections some illustrative problems have been discussed so as to illustrate
the procedure for drawing the shear force and bending moment diagrams

1. A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all
values of x) -ve sign means the shear force to the left of the x-section are in downward
direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as —ve according to the sign convention)

so that the maximum bending moment occurs at the fixed end i.e. M = -W 1 From
equilibrium consideration, the fixing moment applied at the fixed end is W1 and the

reaction is W. the shear force and bending moment are shown as,

W ¥ 1X

1»—»1

—
W 1 P / // S.F.Diagram

Ay //
X(% Wi —8.M.Diagram

2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way)

W
[
A TE

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any

section X-X from the left end then, the beam is under the action of following forces.

70



w

PN

W, W,

.So the shear force at any X-section would be = W/2 [Which is constant upto x <1/2]
If we consider another section Y-Y which is beyond 1/2 then

W=

2 2 for all values greater =1/2

Hence S.F diagram can be plotted as,

0

[
//// Wy S.F.Diagram
2

.For B.M diagram:

If we just take the moments to the left of the cross-section,

B. =W sforxliesbetweenC and 152
XX 2
BM = !ieBMatx=0
3‘“=5 2 2
- w
4
AM,., = %x-W[w—zl]
Again
=W X W}Hﬂ
2 2
W Wl
—_—— X —
2 2
Wl Wl
B - v
x| 3 +2
=0
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Which when plotted will give a straight relation i.e.

.
FLN N

7

SF

wi
“4
- // L B.M L 4

It may be observed that at the point of application of load there is an abrupt change in the
shear force, at this point the B.M is maximum.

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

x

wi | length

|
|
, Dl ¥

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given
w / length.
Consider any cross-section XX which is at a distance of x from the free end. If we just take

the resultant of all the forces on the left of the X-section, then

S.Fxx = -Wx for all values of ‘X' ------------ (1)
S~Fxx = O
S~Fxx atx=1— -W1

So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of
the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

BEhd = LN N
=Ry w0
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The above equation is a quadratic in X, when B.M is plotted against x this will produces a
parabolic variation.

The extreme values of this would be at x =0 and x =1

Wiyl
B'ME‘II == T

Hence S.F and B.M diagram can be plotted as follows:

-t w / length
L
- | —=-
X
EF |.a
B.M | -WE
3

4. Simply supported beam subjected to a uniformly distributed load [U.D.L].

X

w
| “length
i /

N 3
— Foropom
Wi, Wi
“2 2

The total load carried by the span would be

= intensity of loading x length

=wxl

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam.

S.F at any X-section X-X is
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=W
2

)

Giving a straight relation, having a slope equal to the rate of loading or intensity of the

loading.
g W WK
s aEx=0 2
soat
2. | =0henczthe 5. Fiszeroatthe certre
dlx= —
3
- Wl
S'_atx=I:_T

The bending moment at the section x is found by treating the distributed load as acting at its

centre of gravity, which at a distance of x/2 from the section

Wi,

Wl ¥

B.I1 = — % - W=
WX 5 b KE
z0the
X
=W.§(I —2] (2]

B, =0
B, -, =0

W2
B.I atx=1 =" g

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force

and bending moment can be drawn in the following way will appear as follows:
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"% T,
/ / 8.M.Diagram

Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may
consists of a resultant normal force, a resultant shear force and a resultant couple. In order to
ensure that the bending effects alone are investigated, we shall put a constraint on the loading
such that the resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

That means F =0

. L
since or M = constant.
Thus, ‘the zero shear force means that the bending moment is constant or the

= bending is same at every cross-section of the beam. Such a situation may be
s Visualized or envisaged when the beam or some portion of the beam, as been
| .

loaded only by pure couples at its ends. It must be recalled that the couples are

assumed to be loaded in the plane of symmetry.

-——Beam

Plane of Symmetry

Fig (1)
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Fig (2)
When a member is loaded in such a fashion it is said to be in pure bending. The examples of

pure bending have been indicated in EX land EX 2 as shown below :

EX .2 P P

zern 5.F

5 F.D

Constant B.M

B.M.D

EX. 1

bk [

SFD

I,

BMD

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-
section gets deformed and we shall have to make out the conclusion that,
1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane
and perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F'
(refer Fig 1(a) ) do not get warped or curved.
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2. Inthe deformed section, the planes of this cross-section have a common intersection i.e.

any time originally parallel to the longitudinal axis of the beam becomes an arc of circle.

_Any Transverse

" Section
A
/, ' o
|
S Il // /
vd R e = “
’ £ N.A = Neutral axis
o |
4
Neutral e e
Surface ’
rd
s

We know that when a beam is under bending the fibres at the top will be lengthened while at
the bottom will be shortened provided the bending moment M acts at the ends. In between
these there are some fibres which remain unchanged in length that is they are not strained,
that is they do not carry any stress. The plane containing such fibres is called neutral surface.
The line of intersection between the neutral surface and the transverse exploratory section is
called the neutral axisNeutral axis (N A) .

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us consider
the two cross-sections of a beamHE and GF , originally parallel as shown in fig 1(a).when
the beam is to bend it is assumed that these sections remain parallel i.e.H'E' and G'F' , the
final position of the sections, are still straight lines, they then subtend some angle <.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends

this will stretch to A'B'
Tlerefore

changeinlength

strain in fibre AB= —M—M=—
orgina length

_AB - AB

YN ButAB=CCandCD=C'D

refer-ofigl{a)andfigl(a)
AB'-CD
[SAn}

C.ostrain =

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis

zero. Therefore, there won't be any strain on the neutral axis

_ iR+v)8 -R8 _ RE+yA -RA _ Y
RA RA =
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slress
strain
Therefore equating the twostrains as

obtained framthe tworelationsi.e,

However

=E whereE = Young's Modulus of elasticity

y ﬁ N.A

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a

distance ‘y' from the N.A, is given by the expression

U:I:
=

if he shaded strip is of area'dA’
thenthe force onthe stripis

F:aaAzgyaA

Moment about thenedtral axiswould be =F.y = g R

Tte toatl moment for the whole

cruss-seclion is therefure gyual Lo

_=E 3 .n_Em oz
bW =% v A= Z G,
ng QEY

Bt A
Now the term is the property of the material and is called as a second moment of area of the

cross-section and is denoted by a symbol I.

Therefore
E
M==1
= @)
camnbinng equation 1 and 2 we get
o _W_E
vy T FH

This equation is known as the Bending Theory Equation.The above proof has involved the

assumption of pure bending without any shear force being present.
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Therefore this termed as the pure bending equation. This equation gives distribution of
stresses which are normal to cross-section i.e. in x-direction.

Section Modulus:

From simple bending theory equation, the maximum stress obtained in any cross- section is

given as

7 L=
max

il
T ™

nax

For any given allowable stress the maximum moment which can be accepted by a particular

shape of cross-section is therefore

For ready comparison of the strength of various beam cross-section this relationship is some
times written in the form

W =Za L where 7= !

max

m
¥mac  Is termed as section modulus
The higher value of Z for a particular cross-section, the higher the bending moment which it
can withstand for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which are helpful to

determine the value of second moment of area, which is required to be used while solving the
simple bending theory equation.

Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as
the summation of areas times the distance squared from a fixed axis. (This property arised
while we were driving bending theory equation). This is also known as the moment of inertia.
An alternative name given to this is second moment of area, because the first moment being

the sum of areas times their distance from a given axis and the second moment being the

square of the distance or| ¥ dA
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Consider any cross-section having small element of area d A then by the definition Ix(Mass

Moment of Inertia about x-axis) = ¥ etiand Iy(Mass Moment of Inertia about y-axis) =

[ ® da

Now the moment of inertia about an axis through ‘O' and perpendicular to the plane of figure
is called the polar moment of inertia. (The polar moment of inertia is also the area moment
of inertia).

1.e,

J = polar moment of inertia

= _[rzdﬁx
= 0%+ yhan
= [sda +] vt da

=1, +1y

The relation (1) is known as the perpendicular axis theorem and may be stated as follows:
The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of
inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three
axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following

manner
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Consider any circular strip of thickness <r located at a radius 'r'.

Than the area of the circular strip would be dA =2<r.<r

=]t
Taking tre limits of intergration from O to 3/2

d
7,
—QHJ'r“Sr
i
d- 4
e om
- 2:'1[‘511:| =

however by perpendicular axistheorem
= et |1_,.
But far the circulzr cross-section the Ixand lyare both
equal be ng morrent of irertia abaut a dismeter
1

lga = h
??d4
lga = =73

forahollow circular sectionof diameterD aad d,
thevaluesof Jandlare definedas

B n()“ - o)

4= 32

np“ - d“]
B4
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Thus
Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis

through the centroid plus the area times the square of the distance between the axes.

- P i i i z

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the centroid
G, of the cross-section, then

I, = I[y + r)” dA b¥ definition (moment of in2rtia about an axs Z7)

= I(+2yh +h?'dA

= [y2da +n? [ea +2n]yda

Since [ ydA= 0
= [yaa +n2[4A
— [y2dn +hZA

.= |, +Ah? |, =Ig (since cross-section axes also pass through G)
Where A = Tntal area nfthe sectinn

Rectangular Section:
For a rectangular x-section of the beam, the second moment of area may be computed as

below :
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Consider the rectangular beam cross-section as shown above and an element of area dA ,
thickness dy , breadth B located at a distance y from the neutral axis, which by symmetry
passes through the centre of section. The second moment of area I as defined earlier would
be
N T J i,
Thus, for the rectangular section the second moment of area about the neutral axis

1.e., an axis through the centre is given by

=
I~
1l
| &1
-
b2
—
m
o
-
-

1l
m ol
ra| g2l o
-
s
o
=

I

O
—
] i
—
=l o r-al

Bl _(o°
1 E
Elc* ©f
= _]— 4+ —

3|8 g

L= BO?
MNa ?

Similarly, the second moment of area of the rectangular section about an axis through the
lower edge of the section would be found using the same procedure but with integral limits
of0toD.
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=g |:£:| ’ :E
Therefore S P

These standards formulas prove very convenient in the determination of Ina for build up
sections which can be conveniently divided into rectangles. For instance if we just want to

find out the Moment of Inertia of an I - section, then we can use the above relation.

— B o
I | A
| |
| |
| |
| |
| |
| |
] | ) ~  |d D
| |

N.A ! !
| |
| |
I I
| |
| |
| |

r
\
- : » e " >
‘H‘ A_ lof dotted rectangle - of shaded portion
Co- BDY [ b
CNAT 2 12
_ BD*  bd®

‘ =
N. A 12 G

Use of Flexure Formula:

[Nlustrative Problems:

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 mm
is used as simply supported beam for a span of 7 m. The girder carries a distributed load of 5
KN /m and a concentrated load of 20 KN at mid-span.

Determine the

(i). The second moment of area of the cross-section of the girder
(i1). The maximum stress set up.

Solution:

The second moment of area of the cross-section can be determained as follows :
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For sections with symmetry about the neutral axis, use can be made of standard I value for a
rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into
convenient rectangles for each of which the neutral axis passes through the centroid. Example

in the case enclosing the girder by a rectangle
I | -

girder: rectangle zhaded portian
_ |200 = 300° 1o 2 a0 = 260° 1012
12 12
=(45-264 Ut
=1.86x10%m? ;
The maximum stressmaybe foundfrom 300 mm I

|
! 7
the simplebendingtheorybyeguation N % ////:
o M_E 7 Y .
y TR 72 Q7

vl m 200 mm

Computation of Bending Moment:

In this case the loading of the beam is of two types

(a) Uniformly distributed load

(b) Concentrated Load

In order to obtain the maximum bending moment the technique will be to consider each
loading on the beam separately and get the bending moment due to it as if no other forces

acting on the structure and then superimpose the two results.

206N 5N | SKNim | 20KN
NS mﬁmi } ‘ / | l |
= I L 3! | B
|
3.5 L L o 4 s Q
= | 7m ‘ 7m| [« . 7m | !
H SKNIm | [~ W i
4 memiﬁml ! |
L L | VAN N D
| | W2 Wiz
[\
s FD\‘I SH ‘ SFD
[ this should be the :
combined shear force
diagram for the above wL?
loading] B WL
4
B.MD




Hence

Mmax"" :wTL+W8L
z0=10% =7 N 5x10% =77
4 g
(35.0 +31.63)10°

=B563 kNm

m
— _ max
| Fnaxm

_B363=10° =150=10°
1.06=10*
0 =518 MNin?

n

T
rax™

Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in
beams was for the case of pure bending i.e. constant bending moment acts along the entire
length of the beam.

Module3

Deflection of Beams Introduction:

In all practical engineering applications, when we use the different components, normally we

have to operate them within the certain limits i.e. the constraints are placed on the

performance and behavior of the components. For instance we say that the particular

component is supposed to operate within this value of stress and the deflection of the

component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but

there may be the deflection which is the more rigid condition under operation. It is obvious

therefore to study the methods by which we can predict the deflection of members under

lateral loads or transverse loads, since it is this form of loading which will generally produce

the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential

equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for
beams that are not stressed beyond the elastic limit.

2. The curvature is always small.
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3. Any deflection resulting from the shear deformation of the material or shear stresses is
neglected.
It can be shown that the deflections due to shear deformations are usually small and hence

can be ignored.

L B

s,/
Py

: B
] e X

Consider a beam AB which is initially straight and horizontal when unloaded. If under the

action of loads the beam deflect to a position A'B' under load or infact we say that the axis
of the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as
the elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds

good.

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every
point is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x
and y, x-axis coincide with the original straight axis of the beam and the y — axis shows the
deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us
construct the normal which intersect at point O denoting the angle between these two normal
be di

But for the deflected shape of the beam the slope i at any point C is defined,
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tani= =¥ we Ay or i=ﬂ Assuming tani =i
ry iy

Futher

cs =[di

however,

ds = d¥ [usually for smal curvature]
Hznce

ds = dx =Rdi

d _ 1

9 R
substitutingthevalueofi, one get

c [dr-*]zljr &y 1

or

deldx) R o R

Framthe simplebendingtheory

Mo E El

Y Zurm-=

rI"rRTTR

snthe hasin differentialequating grverningthe drflectinninf hram sis
2

=g

dx

This is the differential equation of the elastic line for a beam subjected to bending in the plane
of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve
as it is frequently called.

Relationship between shear force, bending moment and deflection: The relationship among
shear force,bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived

ok d3y
—__=EI
dx A

Thus,
da'_-,-'
gy’

Re calling S =F
dx

F=ElI

Therefore, the above expression represents the shear force whereas rate of intensity of loading

can also be found out by differentiating the expression for shear force
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dF

l.e w = ‘H
d4y
w= -FEl
dx*

Trerefore if 'y'isthe deflection of the loadedbe am,
thenthefo lowingimportantrelationscanbearrivedat

S|:IFIE:%

B.M=EI%
Shearforce = [|%
loaddistribution —El%

Methods for finding the deflection: The deflection of the loaded beam can be obtained various
methods.The one of the method for finding the deflection of the beam is the direct integration
method, i.e. the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as

d’y M o_ iy
b = Fl nr =
di? ET 4

onintegrating one get,
d_yz J.de +A----thiseqguation gives the slope
dx " El
of theloadedbeam.

Intzgrate once againto get the deflection.

[
Y-”ﬁdxa-AHEl

Where A and B are constants of integration to be evaluated from the known conditions of
slope and deflections for the particular value of x.

[lustrative examples : let us consider few illustrative examples to have a familiarty with the
direct integration method

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected

to a concentrated load W at the free end, it is required to determine the deflection of the beam
W | X
|
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In order to solve this problem, consider any X-section X-X located at a distance x from the
left end or the reference, and write down the expressions for the shear force abd the bending
moment

5rl,_, = -

BM|,_, = -W.x

Therefore l‘-.-’l|3lc_ch = -y K
the govern ng egquation = dzg,r
4 gequal Bl @t

suastituting the walue of M nterms of x then integrating the equation one get

dy_ W

dx 2El
Inlzygratingunuermure,

dy Yy

== -—dx+]Ad

Jae=-ggroxelae

Y= e +Ax+B
BEI

+ A,

The constants A and B are required to be found out by utilizing the boundary conditions as
defined below

ieatx=L;y=0 (1) at

x=L;dy/dx=0 )

Utilizing the second condition, the value of constant A is obtained as
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vl

2Bl
While employing the first condition vield s
Wi
=-—+AL+B
T EE
2
B=C AL
BE|
CwE_owle
GEl 2El
_wl-3wl _ owl
BEI G El
W_3
~ 3E

SLbstituting the values of Aand B we get
1 [ W WB}{_WB]

e R -
El| BB 281 ZE

The slope aswell asthe deflection would be

raxirmurm at the free end hence putting »=0 we get,

_ Wi
Ymax ™ " 3ET
2
(Selmam = G

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is

subjected to U.d.l with rate of intensity varying w / length.The same procedure can also be

adopted in this case
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=
2
_ _ X
Bv| L= wxi—w[?]
M _ d'y
B 4
dz'_-,-' :_wxz
At 2El
[Fyfowey
T 2E|
d'_-,fz_wx3
dx  GEl
3
I%‘I—%dnt{f\jn
4
WK
=-_——_+Ax+B
= o

Boundary conditions relevant to the problem are as follows:
1. Atx=L;y=0

2. Atx=L; dy/dx=0

The second boundary conditions yields

2
W
A=+
BEI

wiereastie first boundary condition s yields
_ wlt wl?
24El BEI
2El
1 wer® ol Ty wl?
s Y=gl o "5 m
30 Yy wilbe at x =0

wl
Ymaxm= ~ ﬁ

-:h,r] =l.r-.|L3
& ) m EEl

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as
w / length.
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~~ "w/length

i -

In order to write down the expression for bending moment consider any cross- section at

distance of x metre from left end support.

Trediffereatial equation which gives the elastic curve for th2 deflecied beam is
'y _M_ 1 [wl.}{_ﬁ]

& B EIL 2 2
dy _ [ wlx Wit
— = —=rx- | =—=dx+A
3o omex- I oxe
:wI}{z_wx3
4El BEI
Integrating, once mare ane jets
I+ 4 :
Y rE mE A (IJ

Boundary conditions which are relevant in this case are that the deflection at each support
must be zero.

le.atx=0;y=0:atx=1y=0

let us apply these two boundary conditions on equation (1) because the boundary conditions

are on y, This yields B = 0.
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Cowlt o wl?
“2EI 24EI
wi
24E|
Sothe equationwhich gives the deflecticn curveis
1wl we® wlPx
=]

12 24 24

Futher
In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e.

at the position where the load is being applied ].So if we substitute the value of x = L/2

e gfE} 2550

__ S
[ram ~ " FE2E]

Conclusions
(1) The value of the slope at the position where the deflection is maximum would be zero.
(i1) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

_ U wl® _w®_wle
Elf 2 24

By successive differentiation one can find the relations for slope, bending moment, shear

force and rate of loading.

Deflection (y)
Cwlx® o wx -5WLY
«El= -2
' 12 24 24 _~ 384El

Slope (dy/dx) /~| :iL
B Oy _ Iwle? 4w wl® ir"f_l:f
24

i B T I
a" degree Polynomial

—

Bending Moment So the bending moment diagram would
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be

wi

2
et~ i
2
Single degres shear force
edquation in %

Shear Force

Shear force is obtained by
taking third derivative.

Rate of intensity of

loading

Case 4: The direct integration method may become more involved if the expression for entire

beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam

which is subjected to a concentrated load W acting at a distance 'a' from the left end.

w
A i 5 C
~“pw a b o
b i =
Let R; & R be the reactions then,
w

i
R Rz
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BM faor th2 portion AB

M =FrxDixta

BM for tha portion BC
Mo =Rpr-Wix-a)aix il

so the differential equation for the two caseswould be,

diy _
EIZ] = Ry x

2
Elj—ﬁz"l—lr-1 woW @)
E

These two equations can be integrated in the usual way to find ‘y' but this will result in four
constants of integration two for each equation. To evaluate the four constants of integration,
four independent boundary conditions will be needed since the deflection of each support
must be zero, hence the boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required
to evaluate these constants may be defined as follows:

(a) atx=0; y =0 in the portion ABie.0<x<a

(b) at x =1; y = 0 in the portion BCi.e.a<x <1

(c) at x = a; dy/dx, the slope is same for both portion

(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R is obtained as

R =
a+h
Hence,
dy _ Wb
= £ L~ T
EIW —57 Dixda (1)
dy _ Wb
—_= - - A [,
Eldx2 [H+h}}{ Wi - a) 3Lxtl (2)
int=grating (1) and (2 we get
dy WE 4
El k 1A - R
dr 2(a+b) T s @
3
dy _ Wh 5 W(x-a)
FI=L= - k LTI O I 4
e 7tk A W

Using condition (¢) in equation (3) and (4) shows that these constants should be equal, hence
letting

Ki=K;=K
Hence
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dy _ Wh 2
El"! = k Déxtan-a--- 3
dx 2(a+b)” nes )
2
dy _ Wb, W(x-a) e
ﬁ_z[aﬂn)x 5 +k At wdloeennn- ()
Integrating agian ejuation (3)and (4) we ge:
Ely=5(a+b)x3+<x+k3 O<xda------ (5)
3
Ely = Wh y® _Wix-a) +hi+ky FLHE e (6)
Bla+h) 6
Utlizing condition (3)in equation (5) yields
k, =0

Utlizing condition (2)in equation (8) yields
Wb w(l-a)

=E(a+b) = +kl+k,
a
__ Wb |3+W("a) _
s B(a+h) B «
Buta+b=l,
Thus,
2 3
LI Ch e U SR

B B
Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition
(d) is that,

At x = a; y; the deflection is the same for both portion
Trerefare l-l'lllfmm equation 5 = l-l'lllfmm equation &

ar
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3
Wh g _ Wby W(x-a)
38 +b)}€ +kw +k3_5[a+b)¥ 5 +hw +hk4
3
wWh 4 _ Wb B_W(a-a]
Ttus, k,=0,
OR
-by? 3
k4=_Wb(aB b) +\;"éb - k{a+b)=c
Wh(a+b)  yyp®
k(a+b)=- +
(3 +b) = =
kz_Wh(a—h)+ Wh
B Ba+h)
50 the deflection equations for each portion of the beam are
Wh o 5
Ely= 1tk +k
T e R
W Whia+blx Wik
= - + ----for0<£x<a-----
(A +0) 5 5[a+b) orf<x<a-—---(7)

and for other portion

3
Ely:ﬁ[ivfbj - W(E a) o+l
SLbstituting the va ue of 'k'in the above equation
_ Wy bt _W[x af _ Wh (& |h}x+ W R
B(a+b) B B B{a+h)
soeither o’ the equation (77 or (81 may be used to find the deflection st x = a
hence substituting x = a in either of the equation we get

Ely Fcrfora<x<l----- (&)

UuaihZ
Vs = "3EMa +b)
ORfa=b=12
_ w0l
mrax™ 13E

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more

simpler way. Let us considering the origin at the point of application of the load,

X
L
- L ¥=0 -
X
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S.FLI:%

ﬂmu=¥[%-x]

suastituting the value of Mir the govarning equation for the deflection

wil_,
d'y _ 212
di El
de _ 1 [wlx_we |,
dxr Elf 4 &
2 2
g= L[ W g
Elf 3 12

Boundary conditions relevant for this case are as follows
(i) atx=0;dy/dx=0 hence,

A=0

(i1)) atx=1/2;y=0 (because

now 1/ 2 is on the left end or

right end support since we

have taken the origin at the

centre)
Thus,
Wil wyl?
0=|—-—+B
[ 32 96 ]
3
B=- WL
48

Henre he eqnatinn which gnvemsthe defledinnwnindhe

1w wn®owe
=l

12 48
Hence
wi®
anax""latx=0 :_@ At the centre
= L= W Atthe end
[C"]max"' etz TEEE eends

Hence the integration method may be bit cumbersome in some of the case. Another limitation

of the method would be that if the beam is of non uniform cross section,

-
I ]|

1.e. it is having different cross-section then this method also fails.

So there are other methods by which we find the deflection like
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1. Macaulay's method in which we can write the different equation for bending moment for
different sections.

2. Area moment methods

MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection
of beams subjected to bending. The method is based on a geometrical interpretation of definite
integrals. This is applied to cases where the equation for bending moment to be written is
cumbersome and the loading is relatively simple. Let us recall the figure, which we referred

while deriving the differential equation governing the beams.

A
G IR -
| elastic curve
I'J & B'
|
/ Ly
Alo—/
I — dx e— °p

It may be noted that d< is an angle subtended by an arc element ds and M is the
bending moment to which this element is subjected. We can assume,

ds = dx [since the curvature is small] hence, R

d<=ds
db_1_M
ds R El
dE _ M
de El

Bt for small curvature[but B is the angle slope is tanﬂ=¥ for small
X

2

anglestand = Bhence § = d—}‘sn e getd—Elr = Mhy autting ds = dx]
il dx?  FI

Hence,

dé _ M _Mdx|

E_Em dE——El i

The relationship as described in equation (1) can be given a very simple graphical

interpretation with reference to the elastic plane of the beam and its bending moment diagram
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[ [)

Iy 8 L)

= Deftbaio :u,__,_,T tangents drawn at the

A% i end of small element ds,

: i g .
Deflection curve of <. — xdo

the beam —> / \)( Arc = Angle x radius

" 0 we can lake the radius
-~ = 1o be equal o x
/ 3B This isalso within
Al v reasonable accuracy

'

Bending Moment dlagram
of the beam subjected to —s| M
arbitrary type of loading

-— —» Bi

Al|

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded
beam and A;Biis its corresponding bending moment diagram.
Let AO = Tangent drawn at A

BO = Tangent drawn at B
Tangents at A and B intersects at the point O.
Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B
is the deflection of point B away from the tangent at A. All these quantities are futher
understood to be very small.

Let ds = dx be any element of the elastic line at a distance x from B and an

angle between at its tangents be d<. Then, as derived earlier

_Mdx
jE——tl

This relationship may be interpreted as that this angle is nothing but the area M.dx of the
shaded bending moment diagram divided by EI.

From the above relationship the total angle < between the tangents A and B may be
determined as

CBivdx 1 B
E'IF_ELWH

A

Since this integral represents the total area of the bending moment diagram, hence we may
conclude this result in the following theorem

Theorem I:
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{ slcpe ar B }_ llxarnanfﬂhﬂdiagrnmhmwnnn

betweer any two points carresponding portionof B.Mdiagram

Now let us consider the deflection of point B relative to tangent at A, this is
nothing but the vertical distance BB'. It may be note from the bending diagram that bending
of the element ds contributes to this deflection by an amount equal to x d<< [each of this
intercept may be considered as the arc of a circle of radius x subtended by the angle < ]

]
5=/ xdf
Hence the total distance B'B becomes A
The limits from A to B have been taken because A and B are the two points on the elastic
curve, under consideration]. Let us substitute the value of d<= M dx / EI as derived earlier
Mds _ % Wi
—= i

B
=[x _—.
i El s El

[ This is infact the moment of area of the bending moment
diagram]|

Since M dx is the area of the shaded strip of the bending moment diagram
and x is its distance from B, we therefore conclude that right hand side of the above equation
represents first moment area with respect to B of the total bending moment area between A
and B divided by EIL
Therefore,we are in a position to state the above conclusion in the form of theorem as follows:

Theorem II:

_1 {ﬁrst rmomment of area with resaect }
Deflection of point ‘B' relative to point A E' | topeintB, of the total B.M diagram
Futher, the first moment of area, according to the definition of centroid may be written as 5

b

where is ecﬁﬁl to distanée of centroid and a is the total area of bending moment

& Ak

_l'-'l.:

)

Thus,
Therefore,the first moment of area may be obtained simply as a product of the total

area of the B.M diagram betweenthe points A and B multiplied by the distance- to
its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded

beam between the points A and B, as shown below,

102



)
I"‘\_.
| b 0
[ i
\ -
1
|
1
os — [T BT
BI
iy D Fye 10

Then, adequate precaution must be exercised in using the above theorem. In such a case B.
M diagram gets divide into two portions +ve and —ve portions with centroids Ciand C,. Then
to find an angle < between the tangentsat the points A and B

o= .[ Md}{ Md}{

Ard similar y fu:ur the deflection of B away fromthe tangent at Abecomes
Imm{ ihds

b= .
El

B
Ilustrative Examples: Let us study few illustrative examples, pertaining to the use of these
theorems Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the
deflection at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below
w

l

Al ' B
N

77

Iz

- -

2L

-
—
\1 WL B.M.Diagram

Let us workout this problem from the zero slope condition and apply the first area - moment

theorem
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slope at A:%[Area of BMdiagrambetween the points A andE]

R
—EIEL.WLI

w2

- 2El
The deflection at A (relative to B) may be obtained by applying the second area - moment
theorem

NOTE: In this case the point B is at zero slope.

Thrus,

§=_

Ei [first moment of areaof B.Mdiagram setween A andEabout A]

Example 2: Simply supported beam is subjected to a concentrated load at the mid span
determine the value of deflection.
A simply supported beam is subjected to a concentrated load W at point C. The bending

moment diagram is drawn below the loaded beam.

B.M digram.

Again working relative to the zero slope at the centre C.
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slpe at A= 5 [Area of B.M diagrambetween A and C]
= % I[;][%][#]l we are taking half area of the B.Mbecause we
have towork outthisrelative to a zero slope
_ i
16kl
Deflection of A relstive to C = central deflection of C
or

6= %[Mu ment of B.Mdiagram between points A and C aboct A]

s IR

_ il
43E|

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a
intensity of loading W / length. It is required to determine the deflection. The bending
moment diagram is drawn, below the loaded beam, the value of maximum B.M is equal

to W12/ 8

W/Ieng‘m
AQONNNNNNTY
. ik
A B
L
S
4

A C R S.F.Diagram
lva
"%

2
Wl
&

B8.M.Diagram

w7 el
PR

leSiB(LR) |

So by area moment method,
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Slope at point Cw.~t point & = _ [Area of B.Mdiag-am between point A ancC]

El
_ 2y wl L
EIR3)l 8 M2
_we
24El
. A _1 =
Deflection at point = _E[A ¥
relative to A
1wl s YL
ElNf| 24 \ENZ
= 5 4
ljtiill:l'WL
Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding
change in moment equation. This requires that a separate moment equation be written
between each change of load point and that two integration be made for each such moment
equation. Evaluation of the constants introduced by each integration can become very
involved. Fortunately, these complications can be avoided by writing single moment equation
in such a way that it becomes continuous for entire length of the beam in spite of the
discontinuity of loading.

Note : In Macaulay's method some author's take the help of unit function approximation (i.e.
Laplace transform) in order to illustrate this method, however both are essentially the same.
For example consider the beam shown in fig below:

Let us write the general moment equation using the definition M = ( ). M ), Which means
that we consider the effects of loads lying on the left of an exploratory section. The moment

equations for the portions AB,BC and CD are written as follows

|

500N 450 Nom
« ol ol
L ! - Wy = 480 xMm
s 2m J.  im | 2m _
Ri=480N | Fem 920N W = [480 x- 500 (x-2) M.
X J x Vieg = [fmu x—buu[x—zj—diu[x—dfll\l.m

It may be observed that the equation for Mcp will also be valid for both Mag and ~ Mgc

provided that the terms ( x - 2 ) and ( x - 3 )?are neglected for values of x less than 2 m and 3
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m, respectively. In other words, the terms (x - 2 ) and ( x - 3 )? are nonexistent for values of

x for which the terms in parentheses are negative.

Y|
: 500 N 450 Nim
A B Cl f Y ¥ ¥ WD
Iy i3
I (S PR | S Zm
Ri1=480 N R:=920N

As an clear indication of these restrictions,one may use a nomenclature in which the usual
form of parentheses is replaced by pointed brackets, namely, < >. With this change in
nomenclature, we obtain a single moment equation

e E ﬁ'-._'d'EI:II.. F!'-.E‘!.u -

{ oo
Ao ARy - Powo— A P = =0 5
ul l.uu.u. SULH R =2 TI"H =y J:w.:u

T1

Which is valid for the entire beam if we postulate that the terms between the pointed brackets
do not exists for negative values; otherwise the term is to be treated like any ordinary
expression.

As an another example, consider the beam as shown in the fig below. Here the distributed
load extends only over the segment BC. We can create continuity, however, by assuming that
the distributed load extends beyond C and adding an equal upward-distributed load to cancel
its effect beyond C, as shown in the adjacent fig below. The general moment equation, written

for the last segment DE in the new nomenclature may be written as:
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Ri=500N R:=1300N
(a) BOD N

400 Nim

’-l T ) N | I | T
N R
b RERER,
L=f |
im am 2m T 2m
Ry =500 N
R;=1300N

ﬂ=[5DDx—E;E(x—ﬂ2+&DD(H—4F443DD(H—E”N.m

A
<

It may be noted that in this equation effect of load 600 N won't appear since it is just at the
last end of the beam so if we assume the exploratary just at section at just the point of
application of 600 N than x = 0 or else we will here take the X - section beyond 600 N which
is invalid.

Procedure to solve the problems

(1). After writing down the moment equation which is valid for all values of ‘x'i.e. containing
pointed brackets, integrate the moment equation like an ordinary equation.

(i1). While applying the B.C's keep in mind the necessary changes to be made regarding the
pointed brackets. llustrative Examples :

1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig.Determine the equations of the elastic curve between each change of load point and the

maximum deflection in the beam.
Y]

A 2m BJ, im C
) I T
l—% o
Ry=100N R:=200N

Solution : writing the general moment equation for the last portion BC of the loaded beam,
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L,
E|%:M:{mm-auu(x-z))mm )
=M=

Intecrating twice the above equation to obtain slope and the deflect on

_d ;
212 = (502180 {x - 2)" +CJNm 2)

Zly :[53_0}{3 - 50 {x- 2 +31}{+02]Nm3 3

To evaluate the two constants of integration. Let us apply the following boundary
conditions:

1. Atpoint A where x = 0, the value of deflection y = 0. Substituting these values
in Eq. (3) we find C> = 0.keep in mind that< x -2 >* is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eq. (3), we obtain
1= [?33 -50(3-2)° +3.C,]or C,=-133N.m’

Having determined the constants of integration, let us make use of Egs. (2) and (3) to

rewrite the slope and deflection equations in the conventional form for the two portions.
segment Ad (U< xL2m)

dy _ 2 2
Bl = [80x" -133)Nm e ()
Ely = [@}F —133}{]N.m3 ...... 5)

segment BZ (Z2m £ x £3m)
E|§_i = (505 150 (x - 2)" ~133x)Nm?......(B)

Ely =[$x3 -5[(x-2)3—133x]m.m3 T
Continuing the solution, we assume that the maximum deflection will occur in the segment
AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the
derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation
(4) equal to zero and solving for the point of zero slope. We obtain

50 x*~ 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does
not yield a value < 2 m then we have to try the other equations which are valid for segment
BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection
occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x

=1.63 m in Eq (5), which yields
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FIy |gem = ~145Nm* (8]

The negative value obtained indicates that the deflection y is downward from the x axis.quite
usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted
by <, the use of y may be reserved to indicate a directed value of deflection.

ifE=30GpaandI=1.9x 10°mm*=1.9x 10 *m*, Eq. (h) becomes

naem = [30:0%][1 31077
= -2 5dmm
Then Example 2:
It is required to determine the value of Ely at the position midway between the supports and

at the overhanging end for the beam shown in figure below.

| 600 N

im i m 2m
A IU N m e

A HIIIHH

Ri =500 N R:= 1300 N

Solution:
Writing down the moment equation which is valid for the entire span of the beam and

applying the differential equation of the elastic curve, and integrating it twice, we obtain

4 -
29 - [500}{ B0 (k-1 « B2 -y +1auu[x—aj]m.m

d

E|g_3" - [250}3 _22_0(}{ 1) 22” (x-4) +650(x-6)° +C1]N.m
Ed

}{—1)4+?|}{ 4yt

B50

3 ?(

=y N [250 R

(x-B)" + Cyx+ CE]N.ma
To determine the value of C,, It may be noted that Ely = 0 at x = 0,which gives C»
= 0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the

condition that Ely = 0 at the right support where x = 6m.This gives

0= 25':' (7 L 53_':'(5314 +53_':'|;2;|4 + GG, or G, = ~1200Hm?

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the
deflection equation for the segment BC obtained by ignoring negative values of the bracketed

terms<x-4<4and<x-6<3.Weobtain

Zly 25[' i c'y L rjzj“ -1308i3) = -1941 N .’
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-or the averhanging end where =8 mwe have

= - |2590 o2 50 .4 50, .4 BS0 . .3

:IY_[T(BJ S ST =5 (2) —1308(8)]
= -1814Nm’

Example 3:
A simply supported beam carries the triangularly distributed load as shown in figure.

Determine the deflection equation and the value of the maximum deflection.

1 Zx = wip*
2 L
We
X =

>

—H
|
I

2 B 2 .
T
Ry=wli4 R=w.L4 waLid fz
(a) (b}

Solution:

Due to symmetry, the reactionsis one half the total load of 1/2woL, or R; = R, = 1/4woL.Due
to the advantage of symmetry to the deflection curve from A to B is the mirror image of that
from C to B. The condition of zero deflection at A and of zero slope at B do not require the
use of a general moment equation. Only the moment equation for segment AB is needed, and
this may be easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and

integrating twice, one can obtain

_ dfy wol  owod

=| = M = 0 - 0 . AT
dd T g T L 3 ¥

_ dy Cwgla? wega?

_lﬂ = 5 170 g |:2:|

_ wo L w %

=ly = 0231 - EEII]L +Cp+ Cy (3)

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the
support A, y = 0 at x = 0.Hence from equation (3), we get C, = 0. Also,because of symmetry,
the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2)

we get

7 4 2
/LY (5 N7 (8 7
g 12 121



Hence the deflection equation from A to B (and also from C to B because of symmetry)
becomes

Elv = wgLx® - wigx° - Bl x
YT TRIC 192
Whicareducesto

Ely = - 22 (261" - 40U + 16x")
SB0L
The maximum deflection at midspar where x=L/2 sthen found tobe
WDL4
Ely = -
T

Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the

left end. It is required to determine using the Macauley's method.

lR; - ﬂ
L L

1

o

-
o &
Ri =M

To deal with couples, only thing to remember is that within the pointed brackets we
have to take some quantity and this should be raised to the power zero.i.e. M<<x -a<°. We
have taken the power 0 (zero) ' because ultimately the term M<< x - a < °Should have the

moment units. Thus with integration the quantity<< x - a < becomes either < x - a < lor<<x -
2

a<
Or
&*‘\M
A ¥} | B
FAN i
e = e b =
e L =

Therefore, writing the general moment equation we get
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dy
W =Rpx-N{x-z) or El— = M
dx
Integrating twice we get
dy ¢ 1
El—L =R, —-M{x-a%y +C
g g TMay G

){3

M. :
Ely =R1.E—§.:_}{ - af +C+ G
Example 5:
A simply supported beam is subjected to U.d.] in combination with couple M. It is required

to determine the deflection.

200N/m
M=1800 N-m
4~ Yy
. )
o M -
' om 2m 2m “2m

This problem may be attemped in the some way. The general moment equation my be written
as

o 200{x-43{u -4}

M) =Myx 1800¢: 2% = 1Ry s By
2z
00{x -2
=R1x—1BDD{x—2}D—#H?z{x—ﬁ}
T hus,
By o 200 {x- 1%
EIE—R1}{—1BDD{}=—2} _T+R2i}{_5>

Integrate twice to get the deflection of the loaded beam.
Module4

Closed Coiled helical springs subjected to axial loads:

Definition: A spring may be defined as an elastic member whose primary function is to deflect
or distort under the action of applied load; it recovers its original shape when load is released.
or

Springs are energy absorbing units whose function is to store energy and to restore it slowly
or rapidly depending on the particular application.

Important types of springs are:

There are various types of springs such as
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(1) helical spring: They are made of wire coiled into a helical form, the load being applied
along the axis of the helix. In these type of springs the major stresses is torsional shear stress

due to twisting. They are both used in tension and compression.

(1) Spiral springs: They are made of flat strip of metal wound in the form of spiral and
loaded in torsion.

In this the major stresses are tensile and compression due to bending.

/e
{ _r?:\\.
/)]

Pinner

(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as
to obtain greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types,

In these type of springs the major stresses which come into picture are tensile & compressive.
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These type of springs are used in the automobile suspension system.

Uses of springs :

(a) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs. (¢) To change the
vibrating characteristics of a member as inflexible mounting of motors.

Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs, consider a

closed coiled spring subjected to an axial load W.

L s

Let

W = axial load D = mean

coil diameter d = diameter

of spring wire n = number of

active coils

C = spring index = D / d For circular wires |
= length of spring wire G = modulus of
rigidity x = deflection of spring q = Angle of
twist
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when the spring is being subjected to an axial load to the wire of the spring gets be twisted
like a shatft.

If q is the total angle of twist along the wire and x is the deflection of spring under the action
of load W along the axis of the coil, sothat x=D /2. <

again 1 = <D n [ consider ,one half turn of a close coiled helical spring ]

Assumptions: (1) The Bending & shear effects may be neglected

(2) For the purpose of derivation of formula, the helix angle is considered to be so
small that it may be neglected.
Any one coil of a such a spring will be assumed to lie in a plane which is nearly <" to the axis
of the spring. This requires that adjoining coils be close together. With this limitation, a
section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to
maintain equilibrium of a segment of the spring, only a shearing force V =F and Torque T =
F. r are required at any X — section. In the analysis of springs it is customary to assume that
the shearing stresses caused by the direct shear force is uniformly distributed and is negligible
so applying the torsion formula.

Using the torsion formula i.e

[N
Joor I
i md* d
and substtituting J= — ;T = w. =
32 2
2x
f=—:l=nrD.
K nlx
SPRING DEFLECTION
wd/2 _ G2x/D
a? nln
32
Tus,
. = Bw D% n
G.d*
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Spring striffness: The stiffness is defined as the load per unit deflection therefore

W' W'
k=—=
£ BwD¥n
G.d*
Trerefore
_ Gd*
50%n

Shear stress

wd i _ I

m* o2
Er
_BwD
OrT_ g = ——
max ?'.!'d3
WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a stress

factor is defined, which is known as Wahl's factor
o Ac-1 0615
dc -4 C
K = Wahl' s factor and is defined as Where C = spring

index
=D/d

if we take into account the Wahl's factor than the formula for the shear stress

_ bk

Tnax"" k]
becomes md

Strain Energy : The strain energy is defined as the energy which is stored within a material
when the work has been done on the material.
In the case of a spring the strain energy would be due to bending and the strain energy due to
bending is given by the expansion
_TEL
2El
L=n0n
??d4
B4
so after substitution we get
ATl
U= 32T Eln
Ed
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Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm
and a maximum shearing stress of 400 N/mm? .if the number of active turns or active coils is
8.Estimate the following:

(1) wire diameter

(i1) mean coil diameter

(ii1) weight of the spring.

Assume G = 83,000 N/mm? ; < = 7700 kg/m> solution :

(1) for wire diametre if W is the axial load, then

w32 g

m* o2
32
400 md* 2
Tds2 3w
A0 2
RO00.16
D =0.0314 ¢
Futher, deflection is given as
. BwD?
G.d*

on substituting the relevant parameters we get
50 - 2.5000.(0.02144%)° 8

83 000.4%
d=13.32mm

Therefore,
D =.0314x (13.317)’mm

=74.15mm
D=74.15 mm

Weight

massorweight = volume. density
= area.length of tha spring.density of spring material

n.dz
= —— aDn.
g e

On substituting the relevant parameters we get
Weight =1.996 kg
=2.0kg

Close — coiled helical spring subjected to axial torque T or axial couple.
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In this case the material of the spring is subjected to pure bending which tends to reduce
Radius R of the coils. In this case the bending moment is constant through out the spring and

is equal to the applied axial Torque T. The stresses i.e. maximum

UHEK = ¥
_T.ci2

il
B4

max ﬂd:l

bending stress may thus be determined from the bending theory.
Deflection or wind — up angle:

Under the action of an axial torque the deflection of the spring becomes the “wind — up” angle
of the spring which is the angle through which one end turns relative to the other. This will be

equal to the total change of slope along the wire, according to area

— moment theorem

LhdL
§ = JF butM=T
L L
i i
Thus, as'T 'remainsconstant
_TL
El
Futher
L=aDn
-
iy
Therefore, on substitution the valie of & oatained s
o= GATD.n
Eq*

Springs in Series: If two springs of different stiffness are joined endon and carry a common
load W, they are said to be connected in series and the combined stiffness and deflection are

given by the following equation.

119



WYY
2 -+
ky ke

ar kz

W
?: Bt

1 1
— + —
k1 ki

= =

w
Springs in parallel: If the two spring are joined in such a way that they have a common
deflection ‘x' ; then they are said to be connected in parallel.In this care the load carried is

shared between the two springs and total load W = W + W,

£ k1 ks
Futher

W=W1 +W2

thus k =k, +k,

Buckling of Columns Introduction:

Structural members which carry compressive loads may be divided into two broad categories
depending on their relative lengths and cross-sectional dimensions.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing when
the yield stress of the material in compression is exceeded.

Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time before
the yield stress in compression is reached. The buckling occurs owing to one the following
reasons.

(a). the strut may not be perfectly straight initially.

(b). the load may not be applied exactly along the axis of the Strut.

(c). one part of the material may yield in compression more readily than others owing to some
lack of uniformity in the material properties through out the strut.

In all the problems considered so far we have assumed that the deformation to be both
progressive with increasing load and simple in form i.e. we assumed that a member in simple
tension or compression becomes progressively longer or shorter but remains straight. Under
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some circumstances however, our assumptions of progressive and simple deformation may
no longer hold good and the member become unstable. The term strut and column are widely
used, often interchangeably in the context of buckling of slender members. ]

At values of load below the buckling load a strut will be in stable equilibrium where the
displacement caused by any lateral disturbance will be totally recovered when the disturbance
is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and
theoretically it should than be possible to gently deflect the strut into a simple sine wave
provided that the amplitude of wave is kept small. Theoretically, it is possible for struts to
achieve a condition of unstable equilibrium with loads exceeding the buckling load, any slight
lateral disturbance then causing failure by buckling, this condition is never achieved in
practice under static load conditions. Buckling occurs immediately at the point where the
buckling load is reached, owing to the reasons stated earlier.

The resistance of any member to bending is determined by its flexural rigidity EI and is The
quantity I may be written as I = Ak?,

Where | = area of moment of inertia A

= area of the cross-section k = radius of

gyration.

The load per unit area which the member can withstand is therefore related to k. There will

be two principal moments of inertia, if the least of these is taken then the ratio

Ly lengt ot member
k7 least radius of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member falls into
the class of columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory.

In the following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this load
‘P' produces a deflection ‘y' at a distance ‘x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at either

end.
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i f«./’l

X

Assumption:

The strut is assumed to be initially straight, the end load being applied axially through

centroid.

=
C

m "y T8 P

X

B.M| = My

+B.M
: -B.M :'

According to sign
convention

Suthe-we know that

dzy
| — =M
du?
diy
dx?

-Py -

M

In this equation ‘M’ is not a function ‘x'. Therefore this equation can not be integrated directly

as has been done in the case of deflection of beams by integration method.

| hus,
dz'_-,-'

El
di?

+ Py =10

Though this equation is in ‘y' but we can't say at this stage where the deflection would be

maximum or minimum.

Sothe  above differential  equation can
K
gy, Py
form dx* El

Let us define a operator
D = d/dx
(D* + n?) y =0 where n* = P/EI
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This is a second order differential equation which has a solution of the form consisting of
complimentary function and particular integral but for the time being we are interested in the
complementary solution only[in this P.I = 0; since the R.H.S of

Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx)

Where A and B are some constants.

g,f=A|:DS_JE}{ + HSIH_JEHC
Therefore El El

In order to evaluate the constants A and B let us apply the boundary conditions,
(1) atx=0;y=0

(i)atx=L;y=0

Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives

Bein[ L= |= 0
El

. . F
TruseitherB =00 5|n[L1|IE]=D

|
all values of ¥ hence the strut has not buckied yvet. Therefore the solution reguire

[

i’

From the above relationship the least value of P which will cause the strut to buckle, and it is

called the “ Euler Crippling Load ” P.from which w obtain.

_ #Cl
P, = Nn

It may be noted tha:the value of | uced in this expression is the least moment of inertia
It should be noted that the other soltions exists for the equation

zir I\/E =0 8. zin nL=0
[ El

The interpretation of the above analysis is that for all the values of the load P, other than those
which make sin nLL = 0; the strut will remain perfectly straight since y = B sinnL =0

For the particular value of
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sirnL =0 ornL=m

Therafare n= "
Hence y =B sin nx=8 sin ?

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection
which it suffers will be maintained. This is subjected to the limitation that ‘L' remains sensibly
constant and in practice slight increase in load at the critical value will cause the deflection
to increase appreciably until the material fails by yielding. Further it should be noted that the
deflection is not proportional to load, and this applies to all strut problems; like wise it will
be found that the maximum stress is not proportional to load.

The solution chosen of nL = < is just one particular solution; the solutions nL=2<,

3<, 5<etc are equally valid mathematically and they do, infact, produce values of
‘P.' which are equally valid for modes of buckling of strut different from that of a simple bow.

Theoretically therefore, there are an infinite number of values of P. , each corresponding with
a different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical
load producing the single bow buckling condition.

The solution nLL = 2< produces buckling in two half — waves, 3< in three half-waves etc.

Py = g? El- P:=4P: a
la ) g
i ( | I
| N |
| |
P P TP;
nLe=x nk=2x nL=23x
Fundamental Mode Second harmonis Third harmonic
(First harmonic) {mid point bracing) {Third point bracing)
F T'El
Ly= = m or Py = —
El K
L = 2mor P, - 4an| - 4P,
YEI L
P 97 El
If L"J{E_I: dmor By = —— = 9P,



If load is applied sufficiently quickly to the strut, then it is possible to pass through the
fundamental mode and to achieve at least one of the other modes which are theoretically
possible. In practical loading situations, however, this is rarely achieved since the high stress
associated with the first critical condition generally ensures immediate collapse.

struts and columns with other end conditions: Let us consider the struts and columns having

different end conditions

Case b: One end fixed and the other free:

-y) R
’ R Omgin
a R
.!: /

e

On rearranging we get
iy , Pvo_ Pa

& B E
P_ s
Leta—n

Hence in operator form, the differential equation reduces to ( D> + n*> ) y = n’a The
solution of the above equation would consist of complementary solution and particular
solution, therefore ygen = A cos(nx) + sin(nx) + P. I where

P.I = the P.I is a particular value of y which satisfies the differential equation
Hence yp1=a

Therefore the complete solution becomes

Y = A cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B

(1) atx=0;y=0

This yields A = -a

(i)atx=0; dy/dx =0

This yields B =0 Hence
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y=<acos(nx)+a

Futher,atx=L;y=a

Therefore a = - a cos(nx) + a or 0 = cos(nL)
Now the fundamental mode of buckling in this case would be
nL=2
2
F L-"Th . .
5 = crefore the Euler's erippling load is given as
P - n?l?
4L
Case 3
Strut with fixed ends:

M

)
{7

3

)
Nz
e O
.
1
S,

/I/fj LS

L
R

Due to the fixed end supports bending moment would also appears at the supports, since

this is the property of the support. Bending Moment at point C=M — P.y

126



2
E18Y = m-py

dx
o d'y P _M
dx* El El

nt = g,Thereﬁre in the operator from the equation reduces to

b
D +rt)y = =
(D +rf)y =g
Ygeneml = chmplememary * Yparlicularimegml

M M

F|F.I - anI - E
Hence the general solution would be
y = BCosnx - A Sinnx +g

Bound-y condiiions relavant to this case are at »=0:y=)

bl
S
Also al %= D;d—y =0 hence
dx
A=
Therefare,
h h

y=—ECDsrx +ﬁ

h
=— [1- Coznx
y=g )
Futher t maybenotedtiatat x =L,y =0
Then( = g (1- Cosnl)

[ hus,ertherg = or [1- Cosnl)=U

obviously (1- Cosnl)=0
cosnl=1
Hencethe leastsolutior wouldbe

nL =27
Jg L=2m Thus the buckling load or crippling load is

44 El
P, = E
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Thus,
Case 4

One end fixed, the other pinned

M

P
\
F X v
v

T
>
V O
o

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary
in this case to introduce a vertical load F at the pin. The moment of F about the built in end
then balances the fixing moment.
With the origin at the built in end, the B,M at C is given as

d*y
EIZYL = -2y + F(L-x

e y o+ F(L-%

2

d
El=J+Py = F(L-%)

dx

Hence

d:y P F

—2 +—y = —[(L-
d  El EI( )

Inthe operator form the equation reduces o

(07 +r) = %(L- )

(L-%)

oM

F
; =——fL- ®)orys=
:'I'Ipartlmlar anl( ) ¥
Thefull so utionistrerefore
y=ACosmyx+B 3innx +;(L- Xi

The boundry conditions relevants o the problem are at »=0,y=0

_ FL

Hence & = o
Asoat x=D;d—y= 0

dx

Hence B = i

nP

ary = “Fleosns + sinnx +E[L— %)
F nP P

¥y = nf; [Sin m¢ - nLCosnx + n'l - x)]

Also when x =L ; y = 0 Therefore
nL Cos nL = Sin nL or tan nL =nL
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The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore

produces the fundamental buckling condition is nL. = 4.49radian

Fh
_ L = 449
o
Pe 2
= =202
El
2057 El
P = b

Equivalent Strut Length:
Having derived the results for the buckling load of a strut with pinned ends the Euler loads

for other end conditions may all be written in the same form.
El

e R, :L—l

Where L is the equivalent length of the strut and can be related to the actual length of the strut
depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the
strut deflection curves shown. The buckling load for each end condition shown is then readily
obtained. The use of equivalent length is not restricted to the Euler's theory and it will be used
in other derivations later.

The critical load for columns with other end conditions can be expressed in terms of the
critical load for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its
unsupported length. Since the bending moment is zero at a point of inflection, the freebody
diagram would indicates that the middle half of the fixed ended is equivalent to a hinged
column having an effective length Le =L/ 2.

The four different cases which we have considered so far are:

(a) Both ends pinned (c) One end fixed, other free

(b) Both ends fixed (d) One end fixed and other pinned
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{a) (k)

| l=Li2
! k=L
i Pu= 'I:!EJ__/? —
i L P = n%E|
o flrd]
- 4n’El
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: S | {0.7L}
] 3 2
) _ r'El _ Z05n°El
1Y 4LZ LE

Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the
end load being applied axially through centroid] reached. There is always some eccentricity
and initial curvature present. These factors needs to be accommodated in the required
formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer a
deflection which increases with load and consequently a bending moment is introduced which
causes failure before the Euler's load is reached. Infact failure is by stress rather than by
buckling and the deviation from the Euler value is more marked as the slenderness-ratio I’k
is reduced. For values of I/k < 120 approx, the error in applying the Euler theory is too great
to allow of its use. The stress to cause buckling from the Euler formula for the pin ended strut

18
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— _F _#H
=nler'sstress, g, = &2 = 2 —
A A

Sut, = Ak?

_ WE

A
—— Euler's curve
T -
For structural steel,
stress B curves concide at ik = 80 )
cunves coincide
Oy o |ttt == c ethk=120
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Cc e—
experimental
curves
50 100 15D 11k
short  intermediate — long column

Allowing for the imperfections of loading and strut, actual values at failure must lie within
and below line CBD.

Other formulae have therefore been derived to attempt to obtain closer agreement between
the actual failing load and the predicted value in this particular range of slenderness ratio
i.e.l/k=40 to I’k=100.

(a) Straight — line formulae :

The permissible load is given by the formulae

ol )

Where the value of index ‘n' depends on the material used and the
end conditions.

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as

Rt

(c) Rankine Gordon Formulae :

P=0,A

where the value of index ‘b' depends on the end conditions.
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T_1 1

P PR
Where P. = Euler crippling load

P = Crushing load or Yield point load in Compression
Pr = Actual load to cause failure or Rankine load
Since the Rankine formulae is a combination of the Euler and crushing load for a strut.

T 1 1

PR, P

2 [

For a very short strut P is very large hence 1/ P c-would be large so that 1/ P .can be neglected.
Thus Pr =P, for very large struts, P . is very small so 1/ P . would be large and 1/

P ccan be neglected ,hence Pr = Pe

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly

accurate for the intermediate values in the range under consideration. Thus rewriting the

formula in terms of stresses, we have

o fA oA
1 _ 1 1
—_— et —
s o, o0,
1 _ 0 +0y
g 7.0,
J,.d a
o= &y - Yy
g, + 0, 120
JE
Tor struts withboth endspinned
_ TE
e T
|
a
g - L 5
a
1+ Y _l
TELk
a

u
a=—1
Where  #°El and the value of ‘a' is found by conducting experiments on various materials.
Theoretically, but having a value normally found by experiment for various materials. This

will take into account other types of end conditions.
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